MUCH ADO ABOUT $N=2$

30 YEARS OF SUPERGRAVITY
PARIS, OCTOBER 2006

Bernard de Wit
Utrecht University

The first 15 years

$\mathrm{N}=2$ supersymmetry and supergravity
\diamond Fayet: Fermi-Bose Hypersymmetry, Nucl Phys, BII 3 (I976)
\diamond Ferrara, van Nieuwenhuizen: Consistent Supergravity with complex spin 3/2 Gauge Fields, Phys. Rev. Lett. 37 (1976)
gauged $\mathrm{N}=2$ supergravity
\& Freedman, Das: Gauge Internal Symmetry In Extended Supergravity,

$$
\text { Nucl. Phys. BI } 20 \text { (I977) }
$$

$\mathrm{N}=2$ supersymmetric gauge theory
\diamond Grimm, Sohnius,Wess: Extended Supersymmetry and Gauge Theories, Nucl. Phys. BI 33 (1978)
off-shell $\mathrm{N}=2$ supergravity
\diamond Fradkin,Vasiliev: Minimal Set ofAuxiliary Fields in SO(2) Extended Supergravity, Phys. Lett. B85 (1979)
\diamond de Wit, van Holten: Multiplets of Linearized SO(2) Supergravity,
Nucl. Phys. BI 55 (I979)
matter couplings, gaugings
\diamond de Wit, Van Proeyen: Potentials and Symmetries of General Gauged
N=2 Supergravity - Yang-Mills Models, Nucl. Phys. B245 (1984)
\diamond de Wit, Lauwers, Van Proeyen: Lagrangians of N=2 Supergravity - Matter Systems, Nucl. Phys. B255 (I 985)
\diamond D’Auria, Ferrara, Fré: Special and quaternionic isometries: General couplings in N=2 supergravity and the scalar potential, Nucl. Phys. B359 (|99|)
c-map, electric/magnetic duality
\diamond Cecotti, Ferrara, Girardello: Geometry ofType II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4 (I 989)
special geometry and Calabi-Yau three-folds
\diamond Strominger: Special Geometry, Commun. Math. Phys. I 33 (I990)
\diamond Candelas, de la Ossa: Moduli Space of Calabi-Yau Manifolds,
Nucl. Phys. B355 (199|)

MANY MORE CONTRIBUTIONS: 48I. 000 GOOGLE HITS !!

Next 15 years: new perspectives

\diamond Supersymmetric gauge theories Seiberg, Witten, 1994
\diamond Topological theories
Witten, 1991
topological strings
Bershadsky, Cecotti, Ooguri, Vafa, I 993
\diamond Black holes
Ferrara, Kallosh, Strominger, 1995
\diamond String effective actions: flux compactifications, gaugings
$\mathrm{N}=2$ supersymmetric actions
moduli stabilization
supersymmetry breaking

General features

* 8 supersymmetries: $\mathrm{N}=2$ in four space-time dimensions
* R-symmetry: $\mathrm{SU}(2) \times \mathrm{U}(1)$ [4D]
* Spherically symmetric BPS states: black holes, magnetic monopoles, dyons
\% Off shell formulations

> the latter is especially relevant when dealing with higher-derivative couplings

N=2 supermultiplets

vector supermultiplet	$\left(X, \Omega^{i}, F_{\mu \nu}, Y^{i j}\right)$	reduced chiral
vector supermultiplet	$\begin{gathered} (\Lambda, د, \\ 2 \end{gathered} \underbrace{}_{3}, \Gamma_{3}$	supermultiplet

tensor supermultiplet
hypermultiplet $\left(L_{3}^{i j}, \varphi_{8}^{i}, \underset{3}{E^{\mu}}, \underset{2}{G}\right)$ $\left(\phi, \zeta^{\alpha}\right)$ no finite off-shell realization 48

Weyl supermultiplet
off-shell: supersymmetry transformations are independent of the Lagrangian

SUPERCONFORMAL MULTIPLET CALCULUS

consider matter supermultiplets in a superconformal supergravity background two examples:
\diamond massive gauge fields: Stuckelberg
matter multiplet in a gauge field background

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4}\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right)^{2}-\frac{1}{2} M^{2}\left|\left(\partial_{\mu}-\mathrm{i} V_{\mu}\right) \mathrm{e}^{\mathrm{i} \phi}\right|^{2} \\
& -\frac{1}{4}\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right)^{2}-\frac{1}{2} M^{2} V_{\mu}{ }^{2}
\end{aligned}
$$

\diamond gravity: Weyl
matter multiplet in a conformal gravity background

$$
\mathcal{L}=\sqrt{g} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{6} \sqrt{g} R \phi^{2} \longleftrightarrow-\frac{1}{2 \kappa^{2}} \sqrt{g} R
$$

GAUGE EQUIVALENCE

building block procedure: irreducibility

Combine the two examples which involve the modulus and the phase of a scalar field

$$
\mathcal{L}=\sqrt{g} g^{\mu \nu}\left[\left(\partial_{\mu}-\mathrm{i} A_{\mu}\right) \bar{X}\right]\left[\left(\partial_{\nu}+\mathrm{i} A_{\nu}\right) X\right]-\frac{1}{6} \sqrt{g} R|X|^{2}
$$

X is projectively defined: $X \leftrightarrow z X$ are identified
Taking several supermultiplets with corresponding scalars $X^{\Lambda}, \quad \Lambda=0,1, \ldots, n$, leads to an n-dimensional special Kähler geometry.

The X^{Λ} parametrize a cone over the special Kähler space. The latter arises as the result of taking a superconformal quotient.

This generalizes to all supermultiplets !
Generally: Life on the cone is simpler !!

CONES
vector multiplet cone

tensor-scalar duality: the hypermultiplet and tensor multiplet cones are not independent
non-renormalization theorem: the vector multiplet cone is decoupled from the other two (at two-derivative level)

Coupling to supergravity is based on 'potentials' such as the Kähler and hyperkähler potentials. These are homogeneous functions invariant under R symmetry for tensor, hyper and vector multiplet cones :

$$
\begin{aligned}
\chi_{\text {tensor }}(L) & =2 F_{I J}(L) L_{i j}^{I} L^{i j J} \\
\chi_{\text {hyper }}(\phi) & =\frac{1}{2} \varepsilon^{i j} \bar{\Omega}_{\alpha \beta} A_{i}^{\alpha}(\phi) A_{j}^{\beta}(\phi) \\
\chi_{\text {vector }}(X, \bar{X}) & =\mathrm{i}\left(X^{\Lambda} \bar{F}_{\Lambda}-\bar{X}^{\Lambda} F_{\Lambda}\right)=N_{\Lambda \Sigma} X^{\Lambda} \bar{X}^{\Sigma}
\end{aligned}
$$

where $F_{\Lambda}=\partial F(X) / \partial X^{\Lambda}$ and the function $F(X)$ holomorphic and homogeneous

These three potentials encode the most general matter couplings to supergravity with tensor, hyper and vector multiplets

Deformations (gaugings)

or: what is the most 'general' $\mathrm{N}=2$ supergravity ?
> tensor multiplets: no gauging seems possible. hypermultiplets: symmetries most transparantly realized on the hyperkähler cone by tri-holomorphic isometries. vector multiplets: must comprise some super-Yang-Mills theory. Subtle because of electric/magnetic duality !

The gauge group must be embedded into the rigid invariance group. For $\mathrm{N}=2$ systems, this is a product group, in view of the fact that vector multiplets and hypermultiplets do not couple directly. For the vector multiplets the rigid invariance group may be realized through electric/magnetic dualities.

Involves the DUAL field strength: $\quad G_{\mu \nu \Lambda} \propto \sqrt{|g|} \varepsilon_{\mu \nu \rho \sigma} \frac{\partial \mathcal{L}}{\partial F_{\rho \sigma}{ }^{\Lambda}}$
Invariance of field equations and Bianchi identities !

Electric/magnetic duality transformations:

$$
\binom{F^{\Lambda}}{G_{\Lambda}} \longrightarrow\left(\begin{array}{ll}
U^{\Lambda} & Z^{\Lambda \Sigma} \\
W_{\Lambda \Sigma} & V_{\Lambda} \Sigma
\end{array}\right)\binom{F^{\Sigma}}{G_{\Sigma}}
$$

$\in \operatorname{Sp}(2 n+2) \quad$ Gaillard, Zumino, 198।
Likewise: $X^{M}=\left(X^{\Lambda}, F_{\Lambda}\right)$ defines an $\operatorname{Sp}(2 n+2)$ vector.
dW,Van Proeyen, 1984
The gauge group generators: $\delta X^{M}=-\Lambda^{P} T_{P N}{ }^{M} X^{N}$
Subject to constraint $\quad T_{(M N}{ }^{Q} \Omega_{P) Q}=0$
Standard lore: one must choose an e/m duality frame where charges are electric:

$$
Z^{\Lambda \Sigma}=0, \quad U^{\Lambda}{ }_{\Gamma} V_{\Sigma}{ }^{\Gamma}=\delta^{\Lambda}{ }_{\Sigma}
$$

structure constants

$$
\delta X^{\Lambda}=-\Lambda^{\Sigma} T_{\Sigma \Gamma}{ }^{\Lambda} X^{\Gamma} \quad \delta F(X)=-\frac{1}{2} \Lambda^{\Sigma} T_{\Sigma \Lambda \Gamma} X^{\Lambda} X^{\Gamma}
$$

requires extra CS-like term
not invariant !

$$
\mathcal{L}_{\text {extra }} \propto \varepsilon^{\mu \nu \rho \sigma} T_{\Lambda \Sigma \Gamma} A_{\mu}{ }^{\Lambda} A_{\nu}{ }^{\Sigma}\left(\partial_{\rho} A_{\sigma}{ }^{\Gamma}+\frac{3}{8} T_{\Xi \Delta}{ }^{\Gamma} A_{\rho}{ }^{\Xi} A_{\sigma}{ }^{\Delta}\right)
$$

However: also magnetic charges can be incorporated !
This requires tensor fields BUT the scalar potential is insensitive to that !
Additional CS-like terms involving magnetic gauge fields.
dW, Samtleben, Trigiante, 2005
Louis, Micu, 2002
Sommovigo, Vaula, 2004
$\mathrm{U}(1)$ moment map: $\nu_{M} \propto T_{M N}{ }^{Q} \Omega_{P Q} \bar{X}^{N} X^{P}$
Gauge invariance: $T_{M N}{ }^{Q} \Omega_{P Q} X^{N} X^{P}=0$

Vector multiplet scalar potential (valid in any e/m frame):
$\mathcal{V} \propto i \Omega_{M N}\left(\bar{X}^{P} T_{P R}{ }^{M} X^{R}\right)\left(X^{Q} T_{Q S}{ }^{N} \bar{X}^{S}\right)$
$\propto \mathrm{i}(\bar{F}-F)_{\Lambda \Sigma}\left(\bar{X}^{P} T_{P R}{ }^{\Lambda} X^{R}\right)\left(X^{Q} T_{Q S}{ }^{\Sigma} \bar{X}^{S}\right)$

Higher-order derivative couplings

There are crucial changes in the presence of higher-order derivatives!

For instance consider $\mathrm{N}=2$ supersymmetric gauge theories
Kähler potential: $K(X, \bar{X}) \propto i \bar{X}^{\Lambda} F_{\Lambda}(X)-\mathrm{i} X^{\Lambda} \bar{F}_{\Lambda}(\bar{X})$
Non-abelian one-loop corrections are inconsistent with this special geometry parametrization. In fact, these corrections are part of an independent supersymmetric invariant whose leading term involves terms quartic in the field strengths!
dW, Grisaru, Rocek, 1996
Also for tensor multiplets higher-order derivative couplings have been constructed
dW, Saueressig, 2006
No vector-hyper non-renormalization theorem anymore

Gravitational higher-order derivative corrections are relevant for the subleading contributions to the black hole entropy in the limit of large charges
chiral class: Weyl background $\quad F(Y) \longrightarrow F(Y, \Upsilon)$

$$
\begin{aligned}
& Y^{\Lambda}-\bar{Y}^{\Lambda}=\mathrm{i} p^{\Lambda} \quad \text { magnetic charges } \\
& F_{\Lambda}-\bar{F}_{\Lambda}=\mathrm{i} q_{\Lambda} \quad \text { electric charges }
\end{aligned}
$$

$$
\Upsilon=-64
$$

NOTE : $Y^{\Lambda}+\bar{Y}^{\Lambda}$ and $F_{\Lambda}+\bar{F}_{\Lambda}$ play the role of electroand magnetostatic potentials

Attractor equations remain valid in the presence of Υ !

Entropy formula:

$$
\mathcal{S}_{\mathrm{macro}}(p, q)=\left.\pi \Sigma\right|_{\text {attractor }}=\pi\left[|Z|^{2}-256 \operatorname{Im} F_{\Upsilon}\right]_{\Upsilon=-64}
$$

$|Z|^{2}=p^{I} F_{I}-q_{I} Y^{I}$
based on the Wald entropy based on a conserved Noether potential

In one particular case:

$$
S_{\mathrm{macro}}=2 \pi \sqrt{\frac{1}{6}\left|\hat{q}_{0}\right|\left(C_{A B C} p^{A} p^{B} p^{C}+c_{2 A} p^{A}\right)}
$$

agrees with the result of microstate counting for both leading and subleading contributions of a five-brane wrapped around a CY 4-cycle and compactified on an extra S^{1}

Also applications to $\mathrm{N}=4$!

N=2 SUPERGRAVITY IS ALIVE AND KICKING

\diamond conformal multiplet calculus leads to cones. For the cones many symmetry proporties are much more transparant
\diamond these cones are described in terms of certain functions/potentials such as a special Kähler potentials or hyperkähler potentials.
These fully encode the corresponding supergravity theory
\diamond gaugings can be written down irrespective of the electric/magnetic duality frame
\diamond off-shell representations are crucial for higher-derivative couplings, many of which have been constructed recently
\diamond many important applications ranging from gauge theories, effective string theory actions, to black holes
en
en

