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The first 15 years .......
N=2 supersymmetry and supergravity

gauged N=2 supergravity

N=2 supersymmetric gauge theory

off-shell N=2 supergravity

Fayet:  Fermi-Bose Hypersymmetry,  Nucl Phys. B113 (1976) 

Ferrara, van Nieuwenhuizen:  Consistent Supergravity with complex spin 3/2 Gauge Fields,  
Phys. Rev. Lett. 37 (1976)

Freedman, Das:  Gauge Internal Symmetry In Extended Supergravity, 
Nucl. Phys. B120 (1977)

de Wit, van Holten:  Multiplets of Linearized SO(2) Supergravity, 
Nucl. Phys. B155 (1979)

Grimm, Sohnius, Wess:  Extended Supersymmetry and Gauge Theories,  
Nucl. Phys. B133 (1978)

Fradkin, Vasiliev:  Minimal Set of Auxiliary Fields in SO(2) Extended Supergravity,  
Phys. Lett. B85 (1979)
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c-map, electric/magnetic duality 

special geometry and Calabi-Yau three-folds

MANY MORE CONTRIBUTIONS:  481.000 GOOGLE HITS !!

matter couplings, gaugings
de Wit, Van Proeyen:  Potentials and Symmetries of General Gauged 

N=2 Supergravity - Yang-Mills Models,  Nucl. Phys. B245 (1984)

Candelas, de la Ossa:  Moduli Space of Calabi-Yau Manifolds,  
Nucl. Phys. B355 (1991) 

  Strominger:  Special Geometry,  Commun. Math. Phys. 133 (1990)

de Wit, Lauwers, Van Proeyen:  Lagrangians of N=2 Supergravity - Matter Systems, 
Nucl. Phys. B255 (1985)

Cecotti, Ferrara, Girardello:  Geometry of Type II Superstrings and the Moduli of 
Superconformal Field Theories,  Int. J. Mod. Phys. A4 (1989)

D’Auria, Ferrara, Fré:  Special and quaternionic isometries: General couplings in 
N=2 supergravity and the scalar potential,  Nucl. Phys. B359 (1991)
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Next 15 years:  new perspectives

Supersymmetric gauge theories Seiberg, Witten, 1994

String effective actions: flux compactifications, gaugings

Black holes Ferrara, Kallosh, Strominger, 1995

N=2 supersymmetric actions
moduli stabilization
supersymmetry breaking

Topological theories Witten, 1991

topological strings Bershadsky, Cecotti, Ooguri, Vafa, 1993
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General features

❉  8 supersymmetries: N=2 in four space-time dimensions

❉  R-symmetry:                                    [4D]SU(2)×U(1)

❉  Spherically symmetric BPS states: black holes, 
      magnetic monopoles, dyons 

❉   Off shell formulations

the latter is especially relevant when 
dealing with higher-derivative couplings 
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N=2 supermultiplets

off-shell: supersymmetry transformations are 
independent of the Lagrangian 

reduced chiral 
supermultipletvector supermultiplet (X, Ωi, Fµν , Y ij)

82 33

tensor supermultiplet (Lij ,ϕi, Eµ, G)
8 233

(Tab
ij ,ψµ

i,χi, Fµν , Rµν
ab, D)Weyl supermultiplet

SU(2)×U(1)

8166 4× 3 5 1

gravitongravitini R symmetry

4 8
hypermultiplet no finite off-shell realization(φ, ζα)
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SUPERCONFORMAL MULTIPLET CALCULUS

consider matter supermultiplets in a 
superconformal supergravity background
two examples: 

massive gauge fields:  Stuckelberg

gravity:  Weyl 

GAUGE EQUIVALENCE
building block procedure: irreducibility 

matter multiplet in a gauge field background

matter multiplet in a conformal gravity background

− 1
4 (∂µVν − ∂νVµ)2 − 1

2M2Vµ
2

L = − 1
4 (∂µVν − ∂νVµ)2 − 1

2M2|(∂µ − iVµ)eiφ|2

L =
√

ggµν∂µφ∂νφ− 1
6

√
gR φ2 − 1

2κ2

√
gR
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Combine the two examples which involve the 
modulus and the phase of a scalar field

L =
√

ggµν [(∂µ − iAµ)X̄][(∂ν + iAν)X]− 1
6

√
gR |X|2

     is projectively defined:                    are identifiedX X ↔ z X

Taking several supermultiplets with corresponding 
scalars                                      leads to an 
n-dimensional special Kähler geometry. 

XΛ , Λ = 0, 1, . . . , n ,

The         parametrize a cone over the special Kähler space.  
The latter arises as the result of taking a 
 superconformal quotient.

XΛ

This generalizes to all supermultiplets !

Generally: Life on the cone is simpler !!
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vector multiplet cone

hypermultiplet cone

tensor multiplet cone

CONES

tensor-scalar duality: the hypermultiplet and tensor 
multiplet cones are not independent

non-renormalization theorem: the vector multiplet cone is 
decoupled from the other two (at two-derivative level) 

special Kähler manifold

quaternion Kähler manifold

no name
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Coupling to supergravity is based on ‘potentials’ such 
as the Kähler and hyperkähler potentials. These are 
homogeneous functions invariant under R symmetry

for tensor, hyper and vector multiplet cones :

These three potentials encode the most general matter couplings 
to supergravity with tensor, hyper and vector multiplets

dW, Van Proeyen, 1984
dW, Kleijn, Vandoren, 1999
dW, Rocek,  Vandoren, 2001
dW, Saueressig, 2006

where                                     
and the function            holomorphic and homogeneous

χtensor(L) = 2 FIJ(L)Lij
I LijJ

χhyper(φ) = 1
2εijΩ̄αβ Ai

α(φ)Aj
β(φ)

χvector(X, X̄) = i
(
XΛF̄Λ − X̄ΛFΛ

)
= NΛΣ XΛX̄Σ

FΛ = ∂F (X)/∂XΛ

F (X)
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Deformations (gaugings)

or: what is the most ‘general’ N=2 supergravity ?

tensor multiplets:  no gauging seems possible. 
hypermultiplets:  symmetries most transparantly realized                               
on the hyperkähler cone by tri-holomorphic isometries.
vector multiplets: must comprise some super-Yang-Mills 
theory. Subtle because of electric/magnetic duality !

The gauge group must be embedded into the rigid invariance 
group. For N=2 systems, this is a product group, in view of the 
fact that vector multiplets and hypermultiplets do not couple 
directly. For the vector multiplets the rigid invariance group 
may be realized through electric/magnetic dualities.

Gµν Λ ∝
√

|g| εµνρσ
∂L

∂Fρσ
ΛInvolves the DUAL field strength: 

Invariance of field equations and Bianchi identities !
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(
FΛ

GΛ

)
−→

(
UΛ

Σ ZΛΣ

WΛΣ VΛ
Σ

)(
FΣ

GΣ

)
Electric/magnetic duality transformations:

Gaillard, Zumino, 1981

Likewise:                                defines an                   vector.XM = (XΛ, FΛ) Sp(2n + 2)

The gauge group generators: δXM = −ΛP TPN
M XN

Subject to constraint T(MN
QΩP )Q = 0

Standard lore: one must choose an e/m duality frame 
where charges are electric:

ZΛΣ = 0 , UΛ
ΓVΣ

Γ = δΛ
Σ

dW, Van Proeyen, 1984

requires extra CS-like  term

δXΛ = −ΛΣTΣΓ
Λ XΓ δF (X) = − 1

2ΛΣ TΣΛΓ XΛXΓ

not invariant !

∈ Sp(2n + 2)

dW, Lauwers,Van Proeyen, 1985

Lextra ∝ εµνρσTΛΣΓAµ
ΛAν

Σ(∂ρAσ
Γ + 3

8TΞ∆
ΓAρ

ΞAσ
∆)

structure constants
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However:  also magnetic charges can be incorporated !

Vector multiplet scalar potential (valid in any e/m frame):

This requires tensor fields BUT the 
scalar potential is insensitive to that !
Additional CS-like terms involving 
magnetic gauge fields.  

U(1) moment map: νM ∝ TMN
Q ΩPQX̄NXP

V ∝ iΩMN (X̄P TPR
MXR)(XQTQS

N X̄S)
∝ i(F̄ − F )ΛΣ(X̄P TPR

ΛXR)(XQTQS
ΣX̄S)

TMN
Q ΩPQXNXP = 0Gauge invariance:

dW, Samtleben, Trigiante, 2005
Louis, Micu, 2002
Sommovigo, Vaula, 2004

dW, de Vroome, in preparation
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Higher-order derivative couplings

There are crucial changes in the presence of higher-order 
derivatives !

For instance consider N=2 supersymmetric gauge theories

Kähler potential: K(X, X̄) ∝ iX̄ΛFΛ(X)− iXΛF̄Λ(X̄)

Non-abelian one-loop corrections are inconsistent with this 
special geometry parametrization. In fact, these corrections are 
part of an independent supersymmetric invariant whose leading 
term involves terms quartic in the field strengths!

dW, Grisaru, Rocek,1996

Also for tensor multiplets higher-order derivative couplings have 
been constructed dW, Saueressig, 2006 

No vector-hyper non-renormalization theorem anymore
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chiral class:  Weyl background

Weyl background

F (Y ) −→ F (Y,Υ)

Gravitational higher-order derivative corrections are relevant for 
the subleading contributions to the black hole entropy in the 
limit of large charges 

Υ = −64

Attractor equations remain valid in the presence of    !Υ

magnetic charges

electric chargesFΛ − F̄Λ = iqΛ

Y Λ − Ȳ Λ = ipΛ

NOTE :                   and                   play the role of electro- 
and magnetostatic potentials 

FΛ + F̄ΛY Λ + Ȳ Λ



Smacro(p, q) = π Σ
∣∣∣
attractor

= π
[
|Z|2 − 256 Im FΥ

]

Υ=−64

Cardoso, dW, Mohaupt, 1998|Z|2 = pIFI − qIY
I

Maldacena, Strominger, Witten, 1997

Entropy formula:

based on the Wald entropy based on a conserved 
Noether potential Wald, 1993

Smacro = 2π

√
1
6

|q̂0| (CABC pApBpC + c2A pA)

In one particular case: 

agrees with the result of microstate counting for both 
leading and subleading contributions of a five-brane wrapped 
around a CY 4-cycle and compactified on an extra 

Also applications to N=4 !

S1
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N=2 SUPERGRAVITY IS ALIVE AND KICKING

conformal multiplet calculus leads to cones. For the cones many 
symmetry proporties are much more transparant

these cones are described in terms of certain functions/potentials 
such as a special Kähler potentials or hyperkähler potentials. 
These fully encode the corresponding supergravity theory

off-shell representations are crucial for higher-derivative 
couplings, many of which have been constructed recently

gaugings can be written down irrespective of the 
electric/magnetic duality frame

many important applications ranging from gauge 
theories, effective string theory actions, to black holes
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