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A more accurate title for this talk is

SUPERSTRING REALIZATIONS OF SUPERGRAVITY

IN TEN AND ELEVEN DIMENSIONS

This is a review talk, which contains no new results. The material

that follows is extracted from Chapter 8 of:

String Theory and M-Theory: A Modern Introduction
Katrin Becker, Melanie Becker, and John H. Schwarz

This will be published soon by Cambridge University Press.
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1 Eleven-dimensional supergravity

The bosonic part of the 11-dimensional supergravity action is

2κ2
11S =

∫
d11x

√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4,

where R is the scalar curvature, F4 = dA3 is the field strength associ-

ated with the potential A3. The relation between the 11-dimensional

Newton’s constant G11, the gravitational constant κ11, and the 11-

dimensional Planck length `p is

16πG11 = 2κ2
11 =

1

2π
(2π`p)

9.

The quantity |F4|2 is defined by the rule
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|Fn|2 =
1

n!
GM1N1GM2N2 · · ·GMnNnFM1M2···MnFN1N2···Nn.

The complete action of 11-dimensional supergravity is invariant un-

der the local supersymmetry transformations

δEA
M = ε̄ΓAΨM ,

δAMNP = −3ε̄Γ[MNΨP ],

δΨM = ∇Mε + 1
12

(
ΓMF(4) − 3F

(4)
M

)
ε.

The formula for δΨM displays the terms that are of leading order in

fermi fields. We have introduced the definitions

F(4) =
1

4!
FMNPQΓMNPQ and F

(4)
M =

1

3!
FMNPQΓNPQ.
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M-branes

An important feature of M-theory (and 11-dimensional supergravity) is

the presence of the three-form gauge field A3. It can couple electrically

to a two-brane, called the M2-brane, and magnetically to a five-brane,

called the M5-brane.

M-branes are BPS branes, whose tensions can be computed exactly.

The results are

TM2 = 2π(2π`p)
−3 and TM5 = 2π(2π`p)

−6.
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2 Type IIA supergravity

The action of 11-dimensional supergravity is related to the actions of

the various ten-dimensional supergravity theories, which are the low-

energy effective descriptions of superstring theories.

The most direct connection is between 11-dimensional supergravity

and type IIA supergravity. The deep reason is that M-theory com-

pactified on a circle of radius R corresponds to type IIA superstring

theory in ten dimensions with coupling constant gs = R/
√
α′.

Type IIA supergravity can be obtained from 11-dimensional super-

gravity by dimensional reduction, i.e., only keeping the zero modes

in the Fourier expansions on the circle.
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Bosonic fields

Dimensional reduction of the metric gives

GMN = e−2Φ/3

(
gµν + e2ΦAµAν e2ΦAµ

e2ΦAν e2Φ

)
,

where the fields depend on the ten-dimensional space-time coordinates

xµ only. One gets a ten-dimensional metric gµν, a U(1) gauge field Aµ,

and a scalar dilaton field Φ.

In terms of the inverse elfbein, the reduction is given by

EM
A =

(
eΦ/3eµa 0

−eΦ/3Aa e−2Φ/3

)
.
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The three-form in D = 11 gives rise to a three-form and a two-form

in D = 10

A(11)
µνρ = Aµνρ and A

(11)
µν11 = Bµν,

with the corresponding field strengths given by

F
(11)
µνρλ = Fµνρλ and F

(11)
µνρ11 = Hµνρ.

Dimensional reduction can lead to somewhat lengthy formulas due

to the nondiagonal form of the metric. A useful trick for dealing with

this is to convert to tangent-space indices, since the reduction of the

tangent-space metric is trivial.

With this motivation, consider

F
(11)
ABCD = EM

A E
N
BE

P
CE

Q
DF

(11)
MNPQ.
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There are two cases depending on whether the indices (A,B,C,D)

are all ten-dimensional or one of them is 11:

F
(11)
abcd = e4Φ/3(Fabcd + 4A[aHbcd]) = e4Φ/3F̃abcd,

F
(11)
abc11 = eΦ/3Habc.

It follows that upon dimensional reduction the 11-dimensional field

strength is a combination of a four-form and a three-form field strength

F(4) = e4Φ/3F̃(4) + eΦ/3H(3)Γ11,

where Γ11 is the ten-dimensional chirality operator. The quantities

F̃(4) and H(3) are defined in the same way as F(4).
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In ten dimensions

16πG10 = 2κ2
10 =

1

2π
(2π`s)

8g2
s .

Dimensional reduction on a circle of radiusR11 gives a relation between

Newton’s constant in ten and 11 dimensions

G11 = 2πR11G10.

One deduces that the radius of the circle is

R11 = g2/3
s `p = gs`s.
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Type IIA Action

The bosonic action in the string frame for type IIA supergravity is

obtained from the zero-mode truncation of the bosonic D = 11 action.

The result contains three distinct types of terms

S = SNS + SR + SCS.

The first term is

SNS =
1

2κ2

∫
d10x

√−g e−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
|H3|2

)
.

This string-frame action is characterized by the exponential dilaton

dependence in front of the curvature scalar. By a Weyl rescaling of the

metric, this action can be transformed to the Einstein frame in which

the Einstein term has the conventional form.
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The remaining two terms in the action S involve the R–R fields and

are given by

SR = − 1

4κ2

∫
d10x

√−g
(
|F2|2 + |F̃4|2

)
,

SCS = − 1

4κ2

∫
B2 ∧ F4 ∧ F4.
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3 Type IIB supergravity

The guiding principles to construct this theory come from supersym-

metry as well as gauge invariance. One challenging feature of the type

IIB theory is that it contains a self-dual five-form field strength. This

introduces an obstruction to formulating the action in a manifestly

covariant form. One strategy for dealing with this is to focus on the

field equations instead, since they can be written covariantly.

Field content

The type IIB supergravity spectrum consists of
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• Fermions: two left-handed Majorana–Weyl gravitinos and two

right-handed Majorana–Weyl dilatinos

• NS–NS bosons: the metric (or zehnbein), the two-form B2, and

the dilaton Φ.

• R–R bosons: antisymmetric tensor fields C0, C2, and C4. The

latter has a self-dual field strength F̃5.

Global SL(2,R) symmetry

Type IIB supergravity has SL(2,R) global symmetry. The theory has

two two-form potentials, B2 and C2, which transform as a doublet

under the SL(2,R) symmetry group.
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The complex scalar field τ , defined by

τ = C0 + ie−Φ,

is useful because it transforms nonlinearly by the familiar rule

τ → aτ + b

cτ + d
.

The field C0 is sometimes referred to as an axion, because of the

shift symmetry C0 → C0 + constant. The field τ is then referred to as

an axion–dilaton field.
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Type IIB S-duality

The global SL(2,R) symmetry of type IIB supergravity is not shared

by the full type IIB superstring theory. It is broken by various stringy

and quantum effects to the discrete subgroup SL(2,Z). The trans-

formation τ → −1/τ inverts the coupling for C0 = 0. This is the

S-duality transformation.

The full group SL(2,Z) is called the U-duality group.

(p,q) strings

Since there are two two-form gauge fieldsB2 and C2 there are two types

of charge that a string can carry. The F-string (or fundamental string)
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has charge (1, 0), which means that it has one unit of the charge that

couples to B2 and none of the charge that couples to C2. In similar

fashion, the D-string couples to C2 and has charge (0, 1).

Since the two-forms form a doublet of SL(2,R) it follows that these

strings also transform as a doublet. In general, they transform into

(p, q) strings, which carry both kinds of charge. The restriction to the

SL(2,Z) subgroup is essential to ensure that these charges are integers,

as is required by the Dirac quantization conditions.

The (p, q) strings are all on an equal footing. This implies that each

of their tensions saturates a BPS bound given by supersymmetry, and

this uniquely determines what their tensions are.
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In the string frame, the tensions are

T(p,q) = |p− qτB|TF1 = TF1

√(
p− q

θ0

2π

)2

+
q2

g2
s

,

where we have defined the vev

τB = 〈τ〉 = 〈C0 + ie−Φ〉 =
θ0

2π
+
i

gs

and

TF1 = T(1,0) =
1

2π`2s
.
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4 An M-theory/type IIB superstring duality

M-theory compactified on a circle gives the type IIA superstring theory.

Furthermore, by T-duality, type IIA superstring theory on a circle

corresponds to type IIB superstring theory on a dual circle.

Putting these two facts together, there should be a duality between

M-theory on a two-torus T 2 and type IIB superstring theory on a circle

S1. The M-theory torus is characterized by an area AM and a modulus

τM, while the IIB circle has radius RB.

Since all of the (p, q) strings in type IIB superstring theory are related

by SL(2,Z) transformations, they are all equivalent, and any one of

them can be weakly coupled. However, when one is weakly coupled,

all of the others are necessarily strongly coupled.
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Let us consider an arbitrary (p, q) string and write down the spec-

trum of its nine-dimensional excitations in the limit of weak coupling

using standard string theory formulas:

M 2
B =

(
K

RB

)2

+ (2πRBWT(p,q))
2 + 4πT(p,q)(NL +NR).

K is the Kaluza–Klein excitation number and W is the string wind-

ing number. NL and NR are excitation numbers of left-moving and

right-moving oscillator modes, and the level-matching condition is

NR −NL = KW.

The plan is to use the formula above for all the (p, q) strings simulta-

neously.
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The formula is not correct at strong coupling, and at most one of

the strings is weakly coupled. The appropriate trick in this case is to

consider only BPS states, i.e., ones belonging to short supersymmetry

multiplets, since their mass formulas can be reliably extrapolated to

strong coupling.

The BPS states are given by

NL = 0 or NR = 0.

In this way, one obtains exact mass formulas for all the BPS states in

the spectrum – many more than appear in any perturbative limit.

There is a unique correspondence between the three integers W, p, q,

where p and q are coprime, and an arbitrary pair of integers n1, n2
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given by

(n1, n2) = (Wp,Wq).

The integer W is the greatest common divisor of n1 and n2.

Altogether, BPS states are characterized by three arbitrary integers

(K,n1, n2) and oscillator excitations corresponding to NL = |WK|,
tensored with a 16-dimensional short multiplet from the NR = 0 sector

(or vice versa).

Let us now consider M-theory compactified on a torus. If the two

periods in the complex plane, which define the torus, are 2πR11 and

2πR11τM, then

AM = (2πR11)
2Im τM

is the area of the torus. In terms of coordinates z = x + iy on the
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torus, single-valued wave functions have the form

ψn1,n2 ∼ exp

{
i

R11

[
n2x− n2Re τM − n1

Im τM
y

]}
.

These characterize Kaluza–Klein excitations. The contribution to the

mass-squared is given by the eigenvalue of −∂2
x − ∂2

y :

M 2
KK =

1

R2
11

[
n2

2 +
(n2Re τM − n1)

2

(Im τM)2

]
=
|n1 − n2τM|2
(R11Im τM)2

.

This term has the right structure to match the type IIB string

winding-mode terms, described above, for the identification

τM = τB.
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The normalization of M 2
KK and the winding-mode contribution to M 2

B

is not the same, because they are measured in different metrics. The

matching determines how to relate the two metrics.

This identification implies that the nonperturbative SL(2,Z) sym-

metry of type IIB superstring theory, after compactification on a cir-

cle, has a dual M-theory interpretation as the modular group of a

toroidal compactification!

Modular transformations of the torus are symmetries, since they cor-

respond to the disconnected components of the diffeomorphism group.

Once the symmetry is established for finite RB, it should also persist

in the decompactification limit RB →∞.
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To go further requires an M-theory counterpart of the Kaluza–Klein

term (K/RB)2 in the type IIB superstring mass formula. Here there is

also a natural candidate: wrapping M-theory M2-branes so as to cover

the torus K times.

If the M2-brane tension is TM2, this gives a contribution

(AMTM2K)2

to the mass-squared. Matching the normalization of this term and

the Kaluza–Klein term one learns that the compactification volumes

RB and AM are related by

g2
s

TF1R2
B

= TM2

(
AM

Im τM

)3/2

.
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5 Conclusion

Joël Scherk’s remarkable contributions in the decade of the 1970s set

the stage for many of the exciting developments that followed. It is a

great pity that he could not participate in these developments.

THE END
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