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Global Symmetries from Toroidal Reduction

When any theory with general coordinate invariance is reduced on
an n-dimensional torus, with xM → (xµ, yi), the residual general
coordinate transformations

δyi = −Λi
j yj

for constant Λi
j give global GL(n, R) symmetries in the lower

dimension.

The SL(n, R) factor leaves the metric invariant, but in general
the extra R factor scales the metric. It too can become a purely
“internal” symmetry (leaving the lower-dimensional metric invari-
ant) if the theory admits an overall scaling symmetry (at the level
of the equations of motion).

Pure Einstein gravity has this symmetry: under gµν → λ2 gµν,

L =
√
−gR −→ λD−2L .

D = 11 supergravity also has such a symmetry, under

gµν −→ λ2 gµν , Aµνρ −→ λ3 Aµνρ ,

L =
√
−g(R− 1

48F2) + 1
6F ∧ F ∧A → λ9L

Extends to all dimensionally-reduced maximal supergravities.



Toroidal Reduction, Step-by-Step

A toroidal KK reduction can be broken up into succesive circle
reductions. At each step, we have x̂M → (xµ, z) and for the
metric

dŝ2 = e2αφ ds2 + e2βφ (dz +A)2 . (1)

φ is the “dilaton” and A the KK vector (1-form). A p-form
potential reduces according to

Â(p) = A(p) + A(p−1) ∧ dz . (2)

Iterating the 1-step reduction n times gives the Tn reduction.

The global symmetries can be characterised by the lower-dimensional
scalar fields, which form a non-linear sigma coset model G/H with
G the global symmetry group. Higher form fields transform as
linear representations of G.

The scalar sector comprises n dilatonic scalars ~φ = (φ1, φ2, . . . , φn),
plus axionic scalars which are 0-form potentials coming from the
reduction of the KK 1-forms, and from any other form fields in
the higher-dimensional theory.



Pure Gravity on Tn

After one step of reduction, L̂ =
√
−ĝR̂ reduces to

L =
√
−gR− 1

2(∂φ1)
2 − 1

4ebφ1F2 .

At the next step, the KK vector gives a vector and an axion, etc.

The scalar sector of the theory reduced on Tn comprises n dila-
tons ~φ, and 1

2n(n − 1) axions χi
j (with i < j), coming from the

reduction of KK 1-forms to axions. This gives 1
2n(n + 1) scalar

fields in the coset GL(n, R)/O(n). The structure of the scalar
Lagrangian is

L =
√
−g

(
− 1

2(∂
~φ)2 − 1

2

∑
i<j

e
~bij·~φ (∂χi

j + · · · )2
)

.

(The ellipses denote non-linear terms like χi
k ∂χk

j, etc.)

After extracting an overall volume scalar (the R factor in GL(n, R)),
the “dilaton vectors” ~bij form the positive roots of the SL(n, R)
algebra. The simple roots are

~b12 , ~b23 , ~b34 , . . . , ~bn−1,n .

We have the usual ~b12 +~b23 = ~b13, etc.



The SL(n, R) Dynkin Diagram

~b12
~b23

~bn−2,n−1
~bn−1,n

© — © — · · · · · · — © — ©

The dilaton vectors bi,i+1 generate the Dynkin diagram of SL(n, R)



Borel Subalgebra Parameterisation of the Scalar Coset

There is an axionic scalar χi
j associated with each positive-root

generator Ei
j of SL(n, R). The dilatons φ are associated with the

Cartan generators ~H. The Borel subalgebra of SL(n, R) is given
by

[ ~H, Ei
j] = ~bij Ei

j , [Ei
j, Ek

`] = δ
j
kEi

` − δ`
iEk

j .

The coset representative V of SL(n, R)/O(n) is then given by

V = e
1
2

~φ· ~H ∏
i<j

eχi
j Ei

j
.

(With anti-lexical ordering of the axion terms. i.e. χ1
2 at the

right, etc.) The scalar Lagrangian is then given by

L = 1
4tr(∂M

−1 ∂M) , M≡ VTV .

(Correctly generates all the non-linear χ∂χ, etc., modifications
too.)

This makes the SL(n, R) symmetry of pure gravity on Tn manifest
in a very simple way, and which easily generalises to supergravity
reductions.



The Kaluza-Klein vectors Ai
(1), with 1 ≤ i ≤ n, are described by

terms in the lower-dimensional Lagrangian of the form

LF = −1
4

n∑
i=1

e
~bi·~φ (F i

(2))
2 ,

with the dilaton vectors ~bi forming the weight vectors of the
n-dimensional representation of SL(n, R). After some work, it
can be shown that SL(n, R) (and the extra R factor) is a global
symmetry of the full lower-dimensional Lagrangian.

The global symmetry of the Tn-reduced theory is seen most easily
in the scalar sector. The rest follows.



Tn Reduction of D = 11 Supergravity

The Tn reduction of

L =
√
−ĝ(R̂− 1

48F̂2
(4)) + 1

6F̂(4) ∧ F̂(4) ∧ Â(3)

proceeds in a similar way. We get further form fields in the lower
dimensions, coming from the reduction of Â(3). Things start to
become interesting after reduction to D ≤ 8, since now there
are extra scalars (axions) χijk coming from Â(3). The scalar La-
grangian in the reduced theory is now of the form of the previous
pure-gravity reduction, plus a part from the reduction of Â(3):

L = −1
2(∂

~φ)2 − 1
2

∑
i<j

e
~bij·~φ (∂χi

j + · · · )2 − 1
2

∑
i<j<k

e~aijk·~φ (∂χijk + · · · )2 .

The dilaton vectors ~bij and ~aijk can again be interpreted as the

positive roots of a Lie algebra, with simple roots ~bi,i+1 (as be-
fore), plus ~a123. They generate the En Dynkin diagram:

~b12
~b23

~b34
~b45

~b56
~b67

~b78
o — o — o — o — o — o — o

|
o

~a123



Global Symmetry in D ≥ 6

In D = 11 − n ≥ 6 dimensions, the symmetry enhancement to
“En” is straightforward. We now introduce

Cartan generators : ~H

Positive-root generators : Ei
j , Eijk

for the dilatons ~φ and the axions χi
j and χijk respectively. They

satisfy the algebra

[ ~H, Ei
j] = ~bij Ei

j , [Ei
j, Ek

`] = δ
j
kEi

` − δ`
iEk

j ,

[ ~H, Eijk] = ~aijk Eijk , [E`
m, Eijk] = −3δ

[i
` Ejk]m ,

[Eijk, E`mn] = 0 .

We make the coset representative

V = e
1
2

~φ· ~H ∏
i<j

eχi
j Ei

j
e
∑

i<j<k χijkEijk
,

and find the scalar Lagrangian is produced (exactly) by

L = 1
4tr(∂M

−1 ∂M) , M≡ VTV .



Global Symmetry in D ≤ 5

In D = 11−n ≤ 5, the scalar sector described so far is incomplete.
The generators Ei

j and Eijk are insufficient to fill out the positive-
root space of En. We are missing 1 generator in D = 5, 7 in
D = 4 and 36 = 28 + 8 in D = 3.

The associated “missing” scalars arise from dualisation!

D = 5 : A(3) −→ χ ,

D = 4 : A(2)i −→ χi ,

D = 3 : A(1)ij −→ χij , and Ai
(1) −→ χi .

With an appropriate augmentation of the set of generators, the
algebra, and the coset representatives, we now get the correct
scalar manifolds. For example, in D = 5 add a generator D, and
now

[Eijk, E`mn] = −εijk`mn D ,

V = e
1
2

~φ· ~H ∏
i<j

eχi
j Ei

j
e
∑

i<j<k χijkEijk
eχ D ,



Further Remarks

• This procedure gives a simple derivation of the scalar coset
G/H for reduction of D = 11 supergravity on Tn:

G H
D = 10 O(1,1) 1
D = 9 GL(2, R) O(2)
D = 8 SL(3, R)× SL(2, R) O(3)×O(2)
D = 7 SL(5, R) O(5)
D = 6 O(5,5) O(5)×O(5)
D = 5 E6 USp(8)
D = 4 E7 SU(8)
D = 3 E8 O(16)

• The enhanced global symmetries in D ≤ 8 require the FFA
term in D = 11 with exactly the coefficient demanded by
supersymmetry!

• The symmetry extends to the form fields (requires more work).
So the full demonstration of the global symmetry is easy in
D = 10, easy in D = 3 (all scalars), and much harder in the
middle cases 4 ≤ D ≤ 6.



“The brontosaurus is thin at one end,
much much thicker in the middle,

and thin at the other end.”

Monty Python



Consistent Dimensional Reductions

• A consistent dimensional reduction is one where the “reduc-
tion ansatz” is substituted into the higher-dimensional equa-
tions of motion, yielding lower-dimensional equations of mo-
tion whose solutions imply solution of the higher-dimensional
equations of motion.

• A consistent dimensional reduction can be performed on any
internal space, provided that one keeps all the (infinite num-
ber) of massive as well as massless modes. Just a generalised
Fourier expansion of the higher-dimensional theory.

• The interesting question is whether one can consistently trun-
cate to the “massless sector,” or at least to some finite sub-
set of lower-dimensional fields. i.e. can one set the rest of
the lower-dimensional fields to zero, consistently with their
equations of motion?

• Group theory (truncation to singlets) guarantees this for re-
duction on S1 or Tn (Kaluza reduction – 1921); and for
group manifold reduction on G keeping GL ⊂ GL ×GR Yang-
Mills (De Witt reduction – 1963).

• The most interesting cases are the “miraculous” ones where a
consistent reduction on Sn, keeping all the SO(n + 1) Yang-
Mills fields, can be performed. (Pauli reduction – 1953)
Although Pauli envisaged such reductions, he recognised that
they could not work in general, and in fact he had no example.



Consistent Sphere Reductions?

• Under what circumstances can there exist a consistent Pauli
reduction on Sn, including the Yang-Mills fields of SO(n +1)
in a lower-dimensional theory with a finite number of fields
(the “massless sector”)?

• If such an Sn reduction is possible, then it will represent a
gauging of the theory obtained by reduction on Tn.

• Conversely, if one turns off the gauge coupling in the Sn-
reduced theory, by sending the radius to infinity, it should
revert to the Tn reduction.

• For the Sn reduction to be a gauging of the Tn reduction,
there must be at least an SO(n + 1) subgroup in the global
symmetry group G of the Tn reduction.

• This immediately rules out the possibilty of a consistent Pauli
reduction in any “generic” theory! (Which would have only
GL(n, R) global symmetry; this does not contain SO(n+1).)

• Only in exceptional cases where there is a symmetry enhance-
ment, is there any chance for a consistent Pauli reduction.
For example, D = 11 supergravity on S4, or on S7.



Doubled Formalism

• Global symmetries can depend on whether fields are dualised
or not. Suggests it could be interesting to reformulate the
theory so that the fields and their duals are all present.

• In eleven dimensions, L = R∗1l−1
2∗F(4)∧F(4)−1

6F(4)∧F(4)∧A(3).

Equation for A(3) is d∗F(4) + 1
2F(4) ∧ F(4) = 0.

• This implies d(∗F(4) + 1
2A(3) ∧ F4) = 0, so we can write the

original equation of motion as the first-order equation

∗F(4) = F̃(7) ≡ dÃ(6) − 1
2A(3) ∧ F(4) .

This equation is invariant under the infinitesimal gauge trans-
formations

δA(3) = Λ(3) , δÃ(6) = Λ̃(6) − 1
2Λ(3) ∧A(3) ,

where dΛ(3) = dΛ̃(6) = 0.

• Gauge transformations now non-Abelian:

[δΛ(3)
, δΛ′

(3)
] = δ

Λ̃′′
(6)

, Λ̃′′(6) ≡ Λ(3) ∧ Λ′(3) ,

[δΛ(3)
, δ

Λ̃(6)
] = 0 , [δ

Λ̃(6)
, δ

Λ̃′
(6)

] = 0 .



Superalgebra of Doubled Formalism

• Introduce generators V for Λ(3) and Ṽ for Λ̃(6). These satisfy
the Lie superalgebra

{V, V } = −Ṽ , [V, Ṽ ] = 0 , [Ṽ , Ṽ ] = 0 .

(Even (odd) generators for even (odd) forms Λ.)

• Ṽ is even, and can be diagonalised. For each eigenvalue
there is a Clifford algebra in one generator. It is a Grassmann
superalgebra deformed to a Clifford algebra because of the
Chern-Simons term:

Grassmann + Chern-Simons = Clifford

• Introduce a “coset representative” V = eA(3)V eÃ(6)Ṽ , so

G ≡ dV V−1 = dA(3)V + (dÃ(6) − 1
2A(3) ∧ F(4))Ṽ

= F(4)V + F̃(7)Ṽ .

• The gauge transformations can now be expressed as

V ′ = V eΛ(3)V eΛ̃(6)Ṽ .



Twisted Self-Duality

• The equation of motion (∗F(4) = F̃(7)) can be written as a
“twisted self-duality equation”

∗G = S G ,

where S is a pseudo-involution that maps between V and Ṽ :

S V = Ṽ , S Ṽ = −V .

(So S2 = −1.)

• Since G = dV V−1, we have the Cartan-Maurer equation

dG = G ∧ G .

• Another formulation of the equation of motion is to start with
G ≡ F(4)V + F̃(7)Ṽ , and plug into the Cartan-Maurer equation.
Since we then have

G ∧ G = −1
2F(4) ∧ F(4) Ṽ ,

we indeed recover the equation of motion from the M-C equa-
tion.



Superdualities Maximal Supergravities

• Lower-dimensional gauged supergravities give larger superd-
uality groups. Duals for all fields (except the metric) are now
included.

• In D dimensions the algebra is a deformation of GnG∗, where
G is itself the semi-direct product of the Borel subalgebra of
the superalgebra SL(11 − D|1) and a rank-3 tensor rep. G∗
is the co-adjoint representation of G.

• Type IIB Supergravity is an unusual case for which the “su-
perduality algebra” is purely bosonic. This is because all the
fields (gauge potentials) are even-degree forms, and so the
generators are all even.

• Possible extensions: Fermions; Include metric; E9, E10, E11,...

• Symmetries present already in D = 11? Or is that “slipping
the rabbit into the hat”?


