Generalised Dualities and Self-Dualities

30 Years of Supergravity
Institut Henri Poincaré
October 19'th, 2006

- Global Symmetries in Supergravities
- Rôle of Dualisation
- Consistent Sphere Reductions - Yes or No?
- Generalised Dualities
- Superdualities

Work with E. Cremmer, B. Julia and H. Lü

Global Symmetries from Toroidal Reduction

When any theory with general coordinate invariance is reduced on an n-dimensional torus, with $x^{M} \rightarrow\left(x^{\mu}, y^{i}\right)$, the residual general coordinate transformations

$$
\delta y^{i}=-\wedge^{i}{ }_{j} y^{j}
$$

for constant $\wedge^{i}{ }_{j}$ give global $G L(n, \mathbb{R})$ symmetries in the lower dimension.

The $S L(n, \mathbb{R})$ factor leaves the metric invariant, but in general the extra \mathbb{R} factor scales the metric. It too can become a purely "internal" symmetry (leaving the lower-dimensional metric invariant) if the theory admits an overall scaling symmetry (at the level of the equations of motion).

Pure Einstein gravity has this symmetry: under $g_{\mu \nu} \rightarrow \lambda^{2} g_{\mu \nu}$,

$$
\mathcal{L}=\sqrt{-g} R \longrightarrow \lambda^{D-2} \mathcal{L} .
$$

$D=11$ supergravity also has such a symmetry, under

$$
\begin{gathered}
g_{\mu \nu} \longrightarrow \lambda^{2} g_{\mu \nu}, \quad A_{\mu \nu \rho} \longrightarrow \lambda^{3} A_{\mu \nu \rho}, \\
\mathcal{L}=\sqrt{-g}\left(R-\frac{1}{48} F^{2}\right)+\frac{1}{6} F \wedge F \wedge A \rightarrow \lambda^{9} \mathcal{L}
\end{gathered}
$$

Extends to all dimensionally-reduced maximal supergravities.

Toroidal Reduction, Step-by-Step

A toroidal KK reduction can be broken up into succesive circle reductions. At each step, we have $\widehat{x}^{M} \rightarrow\left(x^{\mu}, z\right)$ and for the metric

$$
\begin{equation*}
d \widehat{s}^{2}=e^{2 \alpha \phi} d s^{2}+e^{2 \beta \phi}(d z+\mathcal{A})^{2} \tag{1}
\end{equation*}
$$

ϕ is the "dilaton" and \mathcal{A} the $K K$ vector (1-form). A p-form potential reduces according to

$$
\begin{equation*}
\hat{A}_{(p)}=A_{(p)}+A_{(p-1)} \wedge d z \tag{2}
\end{equation*}
$$

Iterating the 1 -step reduction n times gives the T^{n} reduction.
The global symmetries can be characterised by the lower-dimensional scalar fields, which form a non-linear sigma coset model G / H with G the global symmetry group. Higher form fields transform as linear representations of G.

The scalar sector comprises n dilatonic scalars $\vec{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$, plus axionic scalars which are 0 -form potentials coming from the reduction of the KK 1-forms, and from any other form fields in the higher-dimensional theory.

Pure Gravity on T^{n}

After one step of reduction, $\hat{\mathcal{L}}=\sqrt{-\bar{g}} \hat{R}$ reduces to

$$
\mathcal{L}=\sqrt{-g} R-\frac{1}{2}\left(\partial \phi_{1}\right)^{2}-\frac{1}{4} e^{b \phi_{1}} \mathcal{F}^{2} .
$$

At the next step, the KK vector gives a vector and an axion, etc.
The scalar sector of the theory reduced on T^{n} comprises n dilatons $\vec{\phi}$, and $\frac{1}{2} n(n-1)$ axions $\chi^{i}{ }_{j}$ (with $i<j$), coming from the reduction of KK 1-forms to axions. This gives $\frac{1}{2} n(n+1)$ scalar fields in the coset $G L(n, \mathbb{R}) / O(n)$. The structure of the scalar Lagrangian is

$$
\mathcal{L}=\sqrt{-g}\left(-\frac{1}{2}(\partial \vec{\phi})^{2}-\frac{1}{2} \sum_{i<j} e^{\vec{b}_{i j} \cdot \vec{\phi}}\left(\partial \chi^{i}{ }_{j}+\cdots\right)^{2}\right) .
$$

(The ellipses denote non-linear terms like $\chi^{i}{ }_{k} \partial \chi^{k}{ }_{j}$, etc.)
After extracting an overall volume scalar (the \mathbb{R} factor in $G L(n, \mathbb{R})$), the "dilaton vectors" $\vec{b}_{i j}$ form the positive roots of the $S L(n, \mathbb{R})$ algebra. The simple roots are

$$
\vec{b}_{12}, \quad \vec{b}_{23}, \quad \vec{b}_{34}, \quad \ldots, \quad \vec{b}_{n-1, n} .
$$

We have the usual $\vec{b}_{12}+\vec{b}_{23}=\vec{b}_{13}$, etc.

The $S L(n, \mathbb{R})$ Dynkin Diagram

The dilaton vectors $b_{i, i+1}$ generate the Dynkin diagram of $S L(n, \mathbb{R})$

Borel Subalgebra Parameterisation of the Scalar Coset

There is an axionic scalar $\chi^{i}{ }_{j}$ associated with each positive-root generator E_{i}^{j} of $S L(n, \mathbb{R})$. The dilatons ϕ are associated with the Cartan generators \vec{H}. The Borel subalgebra of $S L(n, \mathbb{R})$ is given by

$$
\left[\vec{H}, E_{i}^{j}\right]=\vec{b}_{i j} E_{i}^{j}, \quad\left[E_{i}^{j}, E_{k}^{\ell}\right]=\delta_{k}^{j} E_{i}^{\ell}-\delta_{i}^{\ell} E_{k}^{j}
$$

The coset representative \mathcal{V} of $S L(n, \mathbb{R}) / O(n)$ is then given by

$$
\mathcal{V}=e^{\frac{1}{2} \vec{\phi} \cdot \vec{H}} \prod_{i<j} e^{\chi^{i}{ }_{j} E_{i}^{j}}
$$

(With anti-lexical ordering of the axion terms. i.e. $\chi^{1} 2$ at the right, etc.) The scalar Lagrangian is then given by

$$
\mathcal{L}=\frac{1}{4} \operatorname{tr}\left(\partial \mathcal{M}^{-1} \partial \mathcal{M}\right), \quad \mathcal{M} \equiv \mathcal{V}^{\top} \mathcal{V}
$$

(Correctly generates all the non-linear $\chi \partial \chi$, etc., modifications too.)

This makes the $S L(n, \mathbb{R})$ symmetry of pure gravity on T^{n} manifest in a very simple way, and which easily generalises to supergravity reductions.

The Kaluza-Klein vectors $\mathcal{A}_{(1)}^{i}$, with $1 \leq i \leq n$, are described by terms in the lower-dimensional Lagrangian of the form

$$
\mathcal{L}_{F}=-\frac{1}{4} \sum_{i=1}^{n} e^{\vec{b}_{i} \cdot \vec{\phi}}\left(\mathcal{F}_{(2)}^{i}\right)^{2}
$$

with the dilaton vectors \vec{b}_{i} forming the weight vectors of the n-dimensional representation of $S L(n, \mathbb{R})$. After some work, it can be shown that $S L(n, \mathbb{R})$ (and the extra \mathbb{R} factor) is a global symmetry of the full lower-dimensional Lagrangian.

The global symmetry of the T^{n}-reduced theory is seen most easily in the scalar sector. The rest follows.

T^{n} Reduction of $D=11$ Supergravity

The T^{n} reduction of

$$
\mathcal{L}=\sqrt{-\widehat{g}}\left(\widehat{R}-\frac{1}{48} \widehat{F}_{(4)}^{2}\right)+\frac{1}{6} \widehat{F}_{(4)} \wedge \widehat{F}_{(4)} \wedge \widehat{A}_{(3)}
$$

proceeds in a similar way. We get further form fields in the lower dimensions, coming from the reduction of $\hat{A}_{(3)}$. Things start to become interesting after reduction to $D \leq 8$, since now there are extra scalars (axions) $\chi_{i j k}$ coming from $\widehat{A}_{(3)}$. The scalar Lagrangian in the reduced theory is now of the form of the previous pure-gravity reduction, plus a part from the reduction of $\widehat{A}_{(3)}$:
$\mathcal{L}=-\frac{1}{2}(\partial \vec{\phi})^{2}-\frac{1}{2} \sum_{i<j} e^{\vec{b}_{i j} \cdot \vec{\phi}}\left(\partial \chi^{i}{ }_{j}+\cdots\right)^{2}-\frac{1}{2} \sum_{i<j<k} e^{\vec{a}_{i j k} \cdot \vec{\phi}}\left(\partial \chi_{i j k}+\cdots\right)^{2}$.
The dilaton vectors $\vec{b}_{i j}$ and $\vec{a}_{i j k}$ can again be interpreted as the positive roots of a Lie algebra, with simple roots $\vec{b}_{i, i+1}$ (as before), plus \vec{a}_{123}. They generate the E_{n} Dynkin diagram:

Global Symmetry in $D \geq 6$

In $D=11-n \geq 6$ dimensions, the symmetry enhancement to " E_{n} " is straightforward. We now introduce

$$
\begin{aligned}
\text { Cartan generators: } & \vec{H} \\
\text { Positive-root generators: } & E_{i}{ }^{j},
\end{aligned} \quad E^{i j k}
$$

for the dilatons $\vec{\phi}$ and the axions $\chi^{i}{ }_{j}$ and $\chi_{i j k}$ respectively. They satisfy the algebra

$$
\begin{array}{rlrl}
{\left[\vec{H}, E_{i}^{j}\right]} & =\vec{b}_{i j} E_{i}{ }^{j}, & {\left[E_{i}^{j}, E_{k}^{\ell}\right]=\delta_{k}^{j} E_{i}^{\ell}-\delta_{i}^{\ell} E_{k}^{j}} \\
{\left[\vec{H}, E^{i j k}\right]} & =\vec{a}_{i j k} E^{i j k}, & {\left[E_{\ell}^{m}, E^{i j k}\right]=-3 \delta_{\ell}^{i[} E^{j k] m},} \\
{\left[E^{i j k}, E^{\ell m n}\right]} & =0 .
\end{array}
$$

We make the coset representative

$$
\mathcal{V}=e^{\frac{1}{2} \vec{\phi} \cdot \vec{H}} \prod_{i<j} e^{\chi^{i}{ }_{j} E_{i}{ }^{j}} e^{\sum_{i<j<k} \chi_{i j k} E^{i j k}}
$$

and find the scalar Lagrangian is produced (exactly) by

$$
\mathcal{L}=\frac{1}{4} \operatorname{tr}\left(\partial \mathcal{M}^{-1} \partial \mathcal{M}\right), \quad \mathcal{M} \equiv \mathcal{V}^{\top} \mathcal{V}
$$

Global Symmetry in $D \leq 5$

In $D=11-n \leq 5$, the scalar sector described so far is incomplete. The generators E_{i}^{j} and $E^{i j k}$ are insufficient to fill out the positiveroot space of E_{n}. We are missing 1 generator in $D=5,7$ in $D=4$ and $36=28+8$ in $D=3$.

The associated "missing" scalars arise from dualisation!

$$
\begin{array}{ll}
D=5: & A_{(3)} \longrightarrow \chi, \\
D=4: & A_{(2) i} \longrightarrow \chi_{i}, \\
D=3: & A_{(1) i j} \longrightarrow \chi_{i j}, \quad \text { and } \quad \mathcal{A}_{(1)}^{i} \longrightarrow \chi^{i} .
\end{array}
$$

With an appropriate augmentation of the set of generators, the algebra, and the coset representatives, we now get the correct scalar manifolds. For example, in $D=5$ add a generator D, and now

$$
\begin{aligned}
{\left[E^{i j k}, E^{\ell m n}\right] } & =-\epsilon^{i j k \ell m n} D \\
\mathcal{V} & =e^{\frac{1}{2} \vec{\phi} \cdot \vec{H}} \prod_{i<j} e^{\chi^{i}{ }_{j} E_{i}{ }^{j}} e^{\sum_{i<j<k} \chi_{i j k} E^{i j k}} e^{\chi D},
\end{aligned}
$$

Further Remarks

- This procedure gives a simple derivation of the scalar coset G / H for reduction of $D=11$ supergravity on T^{n} :

	G	H
$D=10$	$O(1,1)$	1
$D=9$	$G L(2, \mathbb{R})$	$O(2)$
$D=8$	$S L(3, \mathbb{R}) \times S L(2, \mathbb{R})$	$O(3) \times O(2)$
$D=7$	$S L(5, \mathbb{R})$	$O(5)$
$D=6$	$O(5,5)$	$O(5) \times O(5)$
$D=5$	E_{6}	$U S p(8)$
$D=4$	E_{7}	$S U(8)$
$D=3$	E_{8}	$O(16)$

- The enhanced global symmetries in $D \leq 8$ require the $F F A$ term in $D=11$ with exactly the coefficient demanded by supersymmetry!
- The symmetry extends to the form fields (requires more work). So the full demonstration of the global symmetry is easy in $D=10$, easy in $D=3$ (all scalars), and much harder in the middle cases $4 \leq D \leq 6$.

"The brontosaurus is thin at one end, much much thicker in the middle, and thin at the other end."

Monty Python

Consistent Dimensional Reductions

- A consistent dimensional reduction is one where the "reduction ansatz" is substituted into the higher-dimensional equations of motion, yielding lower-dimensional equations of motion whose solutions imply solution of the higher-dimensional equations of motion.
- A consistent dimensional reduction can be performed on any internal space, provided that one keeps all the (infinite number) of massive as well as massless modes. Just a generalised Fourier expansion of the higher-dimensional theory.
- The interesting question is whether one can consistently truncate to the "massless sector," or at least to some finite subset of lower-dimensional fields. i.e. can one set the rest of the lower-dimensional fields to zero, consistently with their equations of motion?
- Group theory (truncation to singlets) guarantees this for reduction on S^{1} or T^{n} (Kaluza reduction - 1921); and for group manifold reduction on G keeping $G_{L} \subset G_{L} \times G_{R}$ YangMills (De Witt reduction - 1963).
- The most interesting cases are the "miraculous" ones where a consistent reduction on S^{n}, keeping all the $S O(n+1)$ YangMills fields, can be performed. (Pauli reduction - 1953) Although Pauli envisaged such reductions, he recognised that they could not work in general, and in fact he had no example.

Consistent Sphere Reductions?

- Under what circumstances can there exist a consistent Pauli reduction on S^{n}, including the Yang-Mills fields of $S O(n+1)$ in a lower-dimensional theory with a finite number of fields (the "massless sector")?
- If such an S^{n} reduction is possible, then it will represent a gauging of the theory obtained by reduction on T^{n}.
- Conversely, if one turns off the gauge coupling in the S^{n-} reduced theory, by sending the radius to infinity, it should revert to the T^{n} reduction.
- For the S^{n} reduction to be a gauging of the T^{n} reduction, there must be at least an $S O(n+1)$ subgroup in the global symmetry group G of the T^{n} reduction.
- This immediately rules out the possibilty of a consistent Pauli reduction in any "generic" theory! (Which would have only $G L(n, \mathbb{R})$ global symmetry; this does not contain $S O(n+1)$.)
- Only in exceptional cases where there is a symmetry enhancement, is there any chance for a consistent Pauli reduction. For example, $D=11$ supergravity on S^{4}, or on S^{7}.

Doubled Formalism

- Global symmetries can depend on whether fields are dualised or not. Suggests it could be interesting to reformulate the theory so that the fields and their duals are all present.
- In eleven dimensions, $\mathcal{L}=R * \mathbf{1}-\frac{1}{2} * F_{(4)} \wedge F_{(4)}-\frac{1}{6} F_{(4)} \wedge F_{(4)} \wedge A_{(3)}$. Equation for $A_{(3)}$ is $d * F_{(4)}+\frac{1}{2} F_{(4)} \wedge F_{(4)}=0$.
- This implies $d\left(* F_{(4)}+\frac{1}{2} A_{(3)} \wedge F_{4}\right)=0$, so we can write the original equation of motion as the first-order equation

$$
* F_{(4)}=\widetilde{F}_{(7)} \equiv d \widetilde{A}_{(6)}-\frac{1}{2} A_{(3)} \wedge F_{(4)}
$$

This equation is invariant under the infinitesimal gauge transformations

$$
\delta A_{(3)}=\Lambda_{(3)}, \quad \delta \widetilde{A}_{(6)}=\widetilde{\Lambda}_{(6)}-\frac{1}{2} \wedge_{(3)} \wedge A_{(3)}
$$

where $d \wedge_{(3)}=d \widetilde{\Lambda}_{(6)}=0$.

- Gauge transformations now non-Abelian:

$$
\begin{aligned}
{\left[\delta_{\Lambda_{(3)}}, \delta_{\Lambda_{(3)}^{\prime}}\right] } & =\delta_{\widetilde{\Lambda}_{(6)}^{\prime \prime}}, \quad \tilde{\Lambda}_{(6)}^{\prime \prime} \equiv \Lambda_{(3)} \wedge \Lambda_{(3)}^{\prime} \\
{\left[\delta_{\Lambda_{(3)}}, \delta_{\widetilde{\Lambda}_{(6)}}\right] } & =0, \quad\left[\delta_{\widetilde{\Lambda}_{(6)}}, \delta_{\widetilde{\Lambda}_{(6)}^{\prime}}\right]=0
\end{aligned}
$$

Superalgebra of Doubled Formalism

- Introduce generators V for $\Lambda_{(3)}$ and \tilde{V} for $\tilde{\Lambda}_{(6)}$. These satisfy the Lie superalgebra

$$
\{V, V\}=-\tilde{V}, \quad[V, \tilde{V}]=0, \quad[\tilde{V}, \tilde{V}]=0
$$

(Even (odd) generators for even (odd) forms \wedge.)

- \tilde{V} is even, and can be diagonalised. For each eigenvalue there is a Clifford algebra in one generator. It is a Grassmann superalgebra deformed to a Clifford algebra because of the Chern-Simons term:

Grassmann + Chern-Simons $=$ Clifford

- Introduce a "coset representative" $\mathcal{V}=e^{A_{(3)} V} e^{\widetilde{A}_{(6)} \tilde{V}}$, so

$$
\begin{aligned}
\mathcal{G} \equiv d \mathcal{V} \mathcal{V}^{-1} & =d A_{(3)} V+\left(d \tilde{A}_{(6)}-\frac{1}{2} A_{(3)} \wedge F_{(4)}\right) \tilde{V} \\
& =F_{(4)} V+\widetilde{F}_{(7)} \tilde{V}
\end{aligned}
$$

- The gauge transformations can now be expressed as

$$
\mathcal{V}^{\prime}=\mathcal{V} e^{\Lambda_{(3)} V} e^{\tilde{\Lambda}_{(6)} \tilde{V}} .
$$

Twisted Self-Duality

- The equation of motion $\left(* F_{(4)}=\widetilde{F}_{(7)}\right)$ can be written as a "twisted self-duality equation"

$$
* \mathcal{G}=\mathcal{S} \mathcal{G}
$$

where \mathcal{S} is a pseudo-involution that maps between V and \widetilde{V} :

$$
\mathcal{S} V=\tilde{V}, \quad \mathcal{S} \tilde{V}=-V
$$

(So $\mathcal{S}^{2}=-1$.)

- Since $\mathcal{G}=d \mathcal{V} \mathcal{V}^{-1}$, we have the Cartan-Maurer equation

$$
d \mathcal{G}=\mathcal{G} \wedge \mathcal{G}
$$

- Another formulation of the equation of motion is to start with $\mathcal{G} \equiv F_{(4)} V+\widetilde{F}_{(7)} \widetilde{V}$, and plug into the Cartan-Maurer equation. Since we then have

$$
\mathcal{G} \wedge \mathcal{G}=-\frac{1}{2} F_{(4)} \wedge F_{(4)} \tilde{V}
$$

we indeed recover the equation of motion from the $\mathrm{M}-\mathrm{C}$ equation.

Superdualities Maximal Supergravities

- Lower-dimensional gauged supergravities give larger superduality groups. Duals for all fields (except the metric) are now included.
- In D dimensions the algebra is a deformation of $G \ltimes G^{*}$, where G is itself the semi-direct product of the Borel subalgebra of the superalgebra $S L(11-D \mid 1)$ and a rank-3 tensor rep. G^{*} is the co-adjoint representation of G.
- Type IIB Supergravity is an unusual case for which the "superduality algebra" is purely bosonic. This is because all the fields (gauge potentials) are even-degree forms, and so the generators are all even.
- Possible extensions: Fermions; Include metric; $E_{9}, E_{10}, E_{11}, \ldots$
- Symmetries present already in $D=11$? Or is that "slipping the rabbit into the hat"?

