Super-gravitational waves, maximal and reduced supersymmetry

G. Papadopoulos

30 years of Supergravity

Paris, October 2006

SUPERSYMMETRIC SOLUTIONS

Many applications

- M-theory
- String theory, duality
- Branes, Black holes
- Compactifications
- Spinorial geometry, special geometric structures
- AdS/CFT, gravity/Yang-Mills correspondences

ASKING THE RIGHT QUESTION!

• Intersecting M-branes (1996)

with P.K.Townsend

Are there (completely) localized brane intersections?

• Cargese (1999)

Can the 1/2-susy solutions of D=11 and IIB supergravities, N = 16, be classified?

• H. Poincaré Institute (2000-01)

Can the maximal susy solutions of D=11 and IIB supergravities, N = 32, be classified?

KILLING SPINOR EQUATIONS (KSE)

A parallel transport equation for the supercovariant connection \mathcal{D}

 $\delta\psi_A| = \mathcal{D}_A \epsilon = \nabla_A \epsilon + \Sigma_A(e, F)\epsilon = 0$

and possibly algebraic equations

 $\delta\lambda| = \mathcal{A}(e, F)\epsilon = 0$

where ∇ is the Levi-Civita connection, $\Sigma(e, F)$ a Clifford algebra element

$$\Sigma(e,F) = \sum_{k} \Sigma_{[k]}(e,F) \Gamma^{[k]}$$

e frame and F fluxes, ϵ spinor, Γ gamma matrices.

• N no of linearly independent solutions ϵ .

Can the KSE be solved without any assumptions on the metric and fluxes?

MAXIMAL SUPERSYMMETRY D=11 supergravity

Cremmer, Julia, Scherk The maximally susy solutions of D=11 SUGRA, N = 32, are locally isometric $\mathbb{R}^{10,1}$ $AdS_4 \times S^7$ $AdS_7 \times S^4$ CW_{11}

Proof: J. Figueroa-O'Farrill, GP $\mathcal{D}\epsilon = 0 \Rightarrow \mathcal{R}\epsilon := [\mathcal{D}, \mathcal{D}]\epsilon = 0 \Rightarrow \mathcal{R} = 0$ $\mathcal{R} = 0$ implies $\nabla R = 0$, $\nabla F = 0$ and the Plücker relation $i_X i_Y i_Z F \wedge F = 0$

M is a symmetric space and F is a simple form.

• F null (CW_{11})

Kowalski-Glikman

where $ds^{2}(AdS_{n+2}) = z^{-2}(dz^{2} + ds^{2}(\mathbb{R}^{n,1}))$ $ds^{2}(CW_{n+2}) = 2dv(du - A_{ij}x^{i}x^{j}dv) + \sum_{i=1}^{n}(dx^{i})^{2}$

and A constant symmetric matrix.

IIB supergravity

Schwarz, West, Howe

The maximally susy solutions of IIB SUGRA,

N = 32, are locally isometric

 $\mathbb{R}^{9,1}$ $AdS_5 \times S^5$ CW_{10}

Proof:

J. Figueroa-O'Farrill, GP

 $\mathcal{A}\epsilon = 0 \Rightarrow \mathcal{A} = 0 \Rightarrow P = G = 0$

In addition $\mathcal{R}\epsilon = \mathcal{R} = 0$ implies

$$\nabla R = 0 , \quad \nabla F^+ = 0$$

and the modified Plücker relation

$$i_X i_Y i_Z (F^+)^A \wedge F^+{}_A = 0$$

M is a symmetric space and F^+ is sum of two orthogonal simple forms. • $F^+ = 0$ ($\mathbb{R}^{10,1}$) • F^+ non-null ($AdS_5 \times S^5$)

Schwarz

• F^+ null (CW_{10})

Blau, Hull, Figueroa-O'Farrill, GP

Penrose limits of $AdS_{p+1} \times S^q$ are either plane waves CW_{p+q+1} or Minkowski space $\mathbb{R}^{p+q,1}$

Blau, Hull, Figueroa-O'Farrill, GP Strings can be solved on CW_{10}

Metsaev, Tseytlin

New tests for AdS/CFT

Berenstein, Maldacena, Nastase

REDUCED SUPERSYMMETRY Holonomy

Hull, Duff, Liu, Tsimpis, GP For generic D=11 and IIB backgrounds

 $\operatorname{hol}(\mathcal{D}) \subseteq SL(32,\mathbb{R})$

because \mathcal{R} takes values in $\mathfrak{sl}(32,\mathbb{R})$

For N-susy backgrounds

 $hol(\mathcal{D}) \subseteq SL(32 - N, \mathbb{R}) \ltimes \bigoplus_{N} \mathbb{R}^{32 - N}$ = Stab(\epsilon) \cap SL(32, \mathbb{R})

The consequences are

- There may be backgrounds for any N, however see preons (N = 31)
- Any subbundle \mathcal{K} of the Spin bundle \mathcal{S} can be Killing

Gauge Symmetry G

The gauge symmetry G of the KSE are the (local) transformations such that

 $g^{-1}\mathcal{D}(e,F)g = \mathcal{D}(e^g,F^g)$

D=11 SUGRA: G = Spin(10, 1)IIB SUGRA: $G = Spin(9, 1) \times U(1)$

- Backgrounds related by a gauge transformation are identified
- The geometry of backgrounds is (nonuniquely) characterized by the stability subgroup $\operatorname{stab}(\epsilon)$ of the KS in G
- $G \subset \operatorname{col}(\mathcal{D})$, e.g. 2 generic spinors in D=11 and IIB have $\operatorname{stab}(\epsilon) = \{1\}$

• For one spinor

$$D=11$$
: stab = $SU(5)$, $Spin(7) \ltimes \mathbb{R}^9$
Bryan, Figueroa-O'Farrill
IIB: stab = $Spin(7) \ltimes \mathbb{R}^8$, $SU(4) \ltimes \mathbb{R}^8$, G_2

Can extended gauge symmetries help?

Spin(9,1) SPINORS

Consider $U = \mathbb{C} \langle e_1, \dots, e_5 \rangle, e_1, \dots, e_5$ orthonormal w.r.t \langle , \rangle .

Dirac spinors: $\Delta_c = \Lambda^*(U)$

Weyl Spinors: $\Delta_c^+ = \Lambda^{\text{ev}}(U), \ \Delta_c^- = \Lambda^{\text{od}}(U).$

Gamma matrices on Δ_c :

$$\Gamma_0 \eta = -e_5 \wedge \eta + e_5 \lrcorner \eta , \Gamma_5 \eta = e_5 \wedge \eta + e_5 \lrcorner \eta \Gamma_i \eta = e_i \wedge \eta + e_i \lrcorner \eta , \qquad i = 1, \dots, 4 \Gamma_{5+i} \eta = ie_i \wedge \eta - ie_i \lrcorner \eta .$$

The Dirac inner product:

$$D(\eta, \theta) = <\Gamma_0 \eta, \theta >$$

A Majorana inner product:

$$B(\eta, \theta) = \langle B(\eta^*), \theta \rangle , \qquad B = \Gamma_{06789}$$

The Majorana reality condition can be chosen as

$$\eta = -\Gamma_0 B(\eta^*) = \Gamma_{6789} \eta^*$$
.

 $C = \Gamma_{6789}$ is the charge conjugation matrix.

Example

For Weyl spinor $a1 + be_{1234}, a, b \in \mathbb{C}$, the reality condition gives

 $\eta = a1 + a^* e_{1234} \; .$

Two Majorana spinors: $1 + e_{1234}$ and $i1 - ie_{1234}$.

• $\operatorname{stab}(1 + e_{1234}) = Spin(7) \ltimes \mathbb{R}^8$

- stab $(1+e_{1234}, i(1-e_{1234})) = SU(4) \ltimes \mathbb{R}^8$
- Δ_c has an oscillator basis, $\mu = 0, 1, \dots, 4$
 - 1, $e_{\mu} = e_{\mu} \wedge 1$, $e_{\mu\nu} = e_{\mu} \wedge e_{\nu} \wedge 1$,

SPINORIAL GEOMETRY

Gillard, Gran, GP

The ingredients of the spinorial method to classify supergravity backgrounds are

- Gauge symmetry of KSE Effective for backgrounds with small and large number of susies
- Spinors in terms of forms Convenient notation
- An oscillator basis in the space of spinors

Allows to extract the geometric information from the KSE

HETEROTIC SUPERGRAVITY

Geometry of susy backgrounds has been investigated before

In this case $\mathcal{D} = \hat{\nabla} = \nabla - \frac{1}{2}H, H$ torsion, and

 $\operatorname{hol}(\mathcal{D}) = G = Spin(9,1)$

In addition

$$\hat{\nabla}\epsilon = 0 \Rightarrow \hat{R}\epsilon = 0$$

So either

 $\hat{R} = 0$

and M is a group Manifold (dH = 0), or

 $\operatorname{stab}(\epsilon) \neq \{1\}$

• The parallel spinors can be chosen to be constant as in the Berger case for Riemannian manifolds

$\operatorname{stab}(\epsilon)$	N = 1	N = 2	N = 3	N = 4	N = 8	N = 16
$Spin(7) \ltimes \mathbb{R}^8$	\checkmark	-	-	-	-	-
$SU(4) \ltimes \mathbb{R}^8$	-	\checkmark	-	-	-	-
G_2	-		-	-	-	-
$Sp(2) \ltimes \mathbb{R}^8$	-	-		-	-	-
$(SU(2) \times SU(2)) \ltimes \mathbb{R}^8$	-	-	-		-	-
SU(3)	-	-	-		-	-
\mathbb{R}^{*}	-	_	-	_		-
SU(2)	-	-	-	-		-
{1}	-	-	-	-	-	\checkmark

N denotes the number of parallel spinors and stab their stability subgroup in Spin(9, 1). \checkmark denotes the cases that the parallel spinors occur. – denotes the cases that do not occur.

- There are compact K and non-compact stability subgroups $K \ltimes \mathbb{R}^8$
- If N = 16, then the spacetime is locally isometric to $\mathbb{R}^{9,1}$
- Some stab(ε) are different from those that appear in the Berger list for Riemannian manifolds

Geometry

Gran, Lohrmann, GP

- (i). $\operatorname{stab}(\epsilon)$ compact
- The spacetime admits 1 timelike, and 2 (G_2), 3 (SU(3)) and 5 (SU(2)) spacelike $\hat{\nabla}$ -parallel one-forms.
- The commutator [X, Y] of any two $X, Y, \hat{\nabla}$ -parallel vector fields, and so Killing, is also $\hat{\nabla}$ -parallel.
- The commutator is determined by H

Two assumptions

- The parallel spinors are Killing
- The \$\hat{\nabla}\$-parallel vectors constructed from Killing spinor bilinears span a Lie algebra \$\hat{\mu}\$ of a group \$\mathcal{H}\$.

The spacetime is a principal bundle $M = P(\mathcal{H}, B, \pi)$ equipped with a instanton-like connection λ with curvature \mathcal{F} .

The metric and H of the background can be written as

$$ds^{2} = \eta_{ab}\lambda^{a}\lambda^{b} + \pi^{*}d\tilde{s}^{2}$$
$$H = \frac{1}{3}\eta_{ab}\lambda^{a}\wedge d\lambda^{b} + \frac{2}{3}\eta_{ab}\lambda\wedge\mathcal{F}^{b} + \pi^{*}\tilde{H}$$

The base space B admits an integrable, conformally balanced K-structure, compatible with a connection, $\hat{\nabla}$, with skewsymmetric torsion associated with the pair $(d\tilde{s}^2, \tilde{H})$. In addition

 $dH = \eta_{ab} \mathcal{F}^a \wedge \mathcal{F}^b + \pi^* d\tilde{H}$

i.e. part of dH is specified by the first Pontrjagin form of P

$$G_2$$

 $\mathfrak{h} = \mathfrak{sl}(2,\mathbb{R}) \text{ or } \mathbb{R} \oplus \mathfrak{u}(1) \oplus \mathfrak{u}(1)$

$$\tilde{H} = -\frac{r}{6}(d\varphi, \star\varphi)\varphi + \star d\varphi + \star(\tilde{\theta}_{\varphi} \wedge \varphi)$$

Ivanov, et al

$$\begin{split} \tilde{\theta}_{\varphi} &= 2d\Phi \ , \\ d\star\varphi &= -\tilde{\theta}_{\varphi}\wedge\star\varphi \end{split}$$

r = 0 if \mathfrak{h} abelian, and r = 1 if \mathfrak{h} non-abelian, where

$$\tilde{\theta}_{\varphi} = \star (\star d\varphi \wedge \varphi)$$

is the Lee form of the G_2 -invariant form φ .

In addition, λ , is a \mathfrak{h} -valued, $\mathfrak{g}_2 \subset \Lambda^2(\mathbb{R}^7)$ instanton $\operatorname{hol}(\hat{\tilde{\nabla}}) \subseteq G_2$ SU(3) $\mathfrak{h} = \mathbb{R} \oplus^{3} \mathfrak{u}(1), \mathbb{R} \oplus \mathfrak{su}(2), \mathfrak{sl}(2, \mathbb{R}) \oplus$

 $\mathfrak{u}(1), \mathfrak{so}(2) \oplus_{s} \mathfrak{h}_{2}(\mathbb{R})$

If \mathfrak{h} abelian, $\operatorname{hol}(\tilde{\nabla}) \subseteq SU(3)$ and λ an abelian $\mathfrak{s}u(3) \subset \Lambda^2(\mathbb{R}^6)$ Donaldson connection (*B* Hermitian).

if \mathfrak{h} non-abelian, $\operatorname{hol}(\hat{\nabla}) \subseteq U(3)$ and λ is a \mathfrak{h} -valued $\mathfrak{u}(3) \subset \Lambda^2(\mathbb{R}^6)$ Donaldson connection

 $\begin{array}{l} SU(2)\\ \mathfrak{h} = \mathbb{R} \oplus^{5} \mathfrak{u}(1), \, \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{su}(2), \, \mathfrak{cw}_{6}\\ \mathrm{hol}(\hat{\tilde{\nabla}}) \, \subseteq \, SU(2) \, \, \mathrm{and} \, \, \lambda \, \, \mathrm{a} \, \, \mathfrak{h}\text{-valued},\\ \mathrm{instanton} \, \, \mathrm{on} \, \, B \end{array}$

(ii) $\operatorname{stab}(\epsilon) = K \ltimes \mathbb{R}^8$ non-compact

- The KSE have also been solved
- M admits a single $\hat{\nabla}$ -parallel null vector field, and so Killing, with non-vanishing rotation.
- If the rotation vanishes, the spacetime is a pp-wave propagating in a manifold *B* with skew-symmetric torsion and a *K*-structure.

Remark: The analysis can also be extended to N = 2 common sector backgrounds.

IIB N-BACKGROUNDS

Gran, Gutowski, Roest, GP

- Focus on invariant Killing spinors under the heterotic stability groups
- The IIB KSE are tractable for maximal and half-maximal number of invariant spinors

e.g. there are 8 SU(3)-invariant spinors in IIB.

Maximal SU(3)-backgrounds are those with 8 Killing spinors

half-Maximal SU(3)-backgrounds are those with 4 Killing spinors.

$\operatorname{stab}(\epsilon)$	N = 1	N = 2	N = 3	N = 4	N = 6	N = 8	N = 16	N = 32
$Spin(7) \ltimes \mathbb{R}^{8}$	\checkmark		-	-	-	-	-	-
$SU(4) \ltimes \mathbb{R}^8$	\checkmark				-	-	-	-
G_2	\checkmark	\odot			-	-	-	-
$Sp(2) \ltimes \mathbb{R}^8$	-		\odot			-	-	-
$SU(2)^2 \ltimes \mathbb{R}^8$	-			\odot		\checkmark	-	-
SU(3)	-			\odot			-	-
\mathbb{R}^{*}	-					\odot		-
SU(2)	-					\odot		-
{1}	-						\odot	\checkmark

Table: $\sqrt{}$ solved cases. \odot cases that can be tackled. - do not occur.

 \bullet The maximal $G\-$ backgrounds have been classified

IIB *G*-maximal backgrounds

The geometry is characterized by the stability subgroup

- For $K \ltimes \mathbb{R}^8$, M is a pp-wave propagating in a manifold with holonomy K. New solutions were found.
- For compact stability subgroups K, $M = X_n \times Y_{10-n}$, where Y_{10-n} is a manifold with holonomy K and X_n is a Lorentzian symmetric space
 - $-G_2$: $M = \mathbb{R}^{2,1} \times Y_7, Y_7 G_2$ -manifold
 - $-SU(3): M = AdS_2 \times S^2 \times Y_6,$ $\frac{CW_4 \times Y_6}{Y_6}, \mathbb{R}^{3,1} \times Y_6, Y_6 \text{ Calabi-Yau}$
 - $\begin{array}{ll} SU(2): & M = AdS_3 \times S^3 \times Y_4, \\ CW_6 \times Y_4, & \mathbb{R}^{5,1} \times Y_4, & Y_4 & \text{hyper-} \\ & \text{K\"ahler.} \end{array}$

Do all N really occur ?

Gran, Gutowski, Roest, GP

Preons are solutions that preserve 31 supersymmetries.

31 spinors span a hyperplane and have a unique normal ν w.r.t. a suitable inner product in the space of IIB spinors.

The gauge symmetry can be used to choose the normal ν as

$\operatorname{stab}(\nu)$	spinor ν
$Spin(7) \ltimes \mathbb{R}^8$	$(a+ib)(e_5+e_{12345})$
$SU(4) \ltimes \mathbb{R}^8$	$(a+ib)e_5 + (c+id)e_{12345}$
G_2	$a(e_5 + e_{12345}) + b(e_1 + e_{234})$

Choose the Killing spinors orthogonal to ν . Then

 $\mathcal{A}\epsilon_r = 0 , \quad r = 1, \dots 31$

implies that

$$P = G = 0$$

The remaining KSE are linear over the complex numbers and so the number of Killing spinors preserved is even. So there are no IIB preons.

• There are no IIA preons

Bandos, Azcarraga, Izquierdo, et al

• Are there any M-preons?

D=11 N-BACKGROUNDS

D = 11 case is less complete. There are many cases where $\operatorname{stab}(\epsilon) \subset Spin(10, 1)$ is non-trivial,

e.g. $Spin(7) \ltimes \mathbb{R}^9$, SU(5), SU(4), SU(3), $SU(3) \times SU(2)$, $SU(2) \times SU(2)$, SU(2) and others.

The KSE have been solved for the following cases

$\operatorname{stab}(\epsilon)$	N = 1	N = 2	N = 3	N = 4
$Spin(7) \ltimes \mathbb{R}^9$	\checkmark	\checkmark	_	_
SU(5)	\checkmark	\checkmark	-	-
SU(4)	-	\checkmark		\checkmark
$G_2 \ltimes \mathbb{R}^9$	-			

Gauntlett, Gutowski, Pakis

Gillard, Gran, Roest, GP

Cariglia, Conamhna

Applications

The N = 2 SU(5)-backgrounds include the most general M-theory compactifications on CY_{10} with fluxes to one-dimension.

The N = 4 SU(4)-backgrounds are rotating, wrapped, resolved, membranes on CY_8 which are generalizations of the M2-brane

Duff, Stelle

SUMMARY

- There is a good understanding of the geometry of supersymmetric heterotic supergravity backgrounds. The geometry of the common sector N = 2 backgrounds is understood. The N ≥ 3 cases are tractable.
- In IIB supergravity the maximally *G*-supersymmetric backgrounds have been classified. The half-maximal *G*backgrounds are tractable. There are no IIB preons.
- In D = 11, the N = 32 backgrounds have been classified and the geometry of N = 1 and a few more N = 2and N = 4 backgrounds has been understood.