Generalized N=2 Compactifications

Jan Louis Universität Hamburg

based on collaboration with:

Mariana Graña, Sebastien Gurrieri, Andrei Micu, Silvia Vaula, Dan Waldram

30 Years of Supergravity, Paris, October 2006

Introduction

String Theory: strings moving in 10d space-time background

- ⇒ contact with "our world": compactification
- ⇒ choose space-time background:

 $M_4 \times Y_6$

 M_4 : 4 dim. space-time

 Y_6 : compact manifold \Rightarrow determines amount of supersymmetry

 \Rightarrow fruitful interplay supersymmetry \leftrightarrow geometry

recently: interplay supersymmetry ↔ generalized geometry

purpose of this talk: review these developments for N = 2 theories

Type II string compactification:

Lorentz group of space-time background $M_{10} = M_4 \times Y_6$ decomposes

$$Spin(1,9) \rightarrow Spin(1,3) \times Spin(6)$$

spinors decompose accordingly: $\mathbf{16} \rightarrow (\mathbf{2, 4}) \oplus (\mathbf{\overline{2}, \overline{4}})$

demand that two supercharges $Q^{1,2}$ exist (N=2)

- \Rightarrow nowhere vanishing, globally defined spinor η needs to exist on Y_6
- \Rightarrow structure group of Y_6 has to be reduced

 $Spin(6) \rightarrow SU(3)$ s.t. $\mathbf{4} \rightarrow \mathbf{3} + \mathbf{1}$

 $\Rightarrow Y_6$ has SU(3)-structure [Gray, Hervella, Salamon, Chiossi, Hitchin, ...]

Supersymmetry of the background

gravitino transformation law

 $\delta \Psi = \nabla \eta + (\gamma \cdot F) \eta + \dots, \quad F = \text{background flux}$

• F = 0 and $\nabla \eta = 0$ $\Rightarrow Y_6$ is Calabi-Yau manifold [Candelas,Horowitz,Strominger,Witten] • $F \neq 0$ and $\nabla \eta \neq 0$ $\Rightarrow Y_6$ has SU(3) structure

[Strominger, ...]

 $\Rightarrow \text{ non-supersymmetric backgrounds } \delta \Psi \neq 0$ $\Rightarrow F \neq 0 \quad \text{and/or} \quad \nabla \eta \neq 0 \quad \Rightarrow Y_6 \text{ has } SU(3) \text{ structure}$

 \Rightarrow analyze manifolds with flux and SU(3) structure

Manifolds with SU(3) structure:

characterized by two tensors J, Ω (follows from existence of η)

 \Rightarrow (1,1)-form

$$J_{mn} = \eta^{\dagger} \gamma_{[m} \gamma_{n]} \eta , \qquad dJ \neq 0$$

 \Rightarrow almost complex structure

$$I_m{}^n = J_{mp}g^{pn}$$
, $I^2 = -1$, $N(I) \neq 0$

 \checkmark (3,0)-form

$$\Omega_{mnp} = \eta^{\dagger} \gamma_{[m} \gamma_n \gamma_{p]} \eta , \qquad d\Omega \neq 0$$

- Remarks:
 - $dJ, d\Omega \sim$ (intrinsic) torsion of Y_6
 - manifolds are not complex, not Kähler, not Ricci-flat
 - manifolds are classified in terms of SU(3) rep. of $dJ, d\Omega$
 - Calabi-Yau: $\nabla \eta = 0 \Rightarrow dJ = d\Omega = N(I) = 0$

N = 2 low energy effective action

$$S = \int_{M_4} \frac{1}{2} R - g_{ab}(z) D_{\mu} z^a D^{\mu} z^b - V(z) + \dots$$

 z^a : scalar fields

- $\Rightarrow g_{ab} \text{ metric on the scalar manifold } \mathcal{M} = \mathcal{M}_{SK}^{V} \times \mathcal{M}_{QK}^{H}$ $\mathcal{M}_{SK}^{V} \text{: special Kähler manifold (vector multiplet sector)}$ $\mathcal{M}_{QK}^{H} \text{: quaternionic Kähler manifold (hypermultiplet sector)}$
- \Rightarrow V determined by Killing prepotential \vec{P}

<u>next</u>: compute g_{ab} , \vec{P} for SU(3) structure manifolds

compute g_{ab}

[Graña, Waldram, JL]

- \Rightarrow decompose 10d fields under $SO(1,3) \times SU(3)$
- ⇒ Impose "standard N = 2" (no massive gravitino multiplets) ⇒ no SU(3) triplets ⇒ $d(J \land J) = 0$ and $d\Omega^{3,1} = 0$
- \Rightarrow insert into D = 10 action:

$$S_{\rm NS} = \int d^{10}x \sqrt{g} \, e^{-2\phi} \left[R + 4(\partial\phi)^2 - \frac{1}{12}H^2 \right]$$

= $\int d^{10}x \sqrt{g^{(4)}} \left[R^{(4)} - 2(\partial\phi^{(4)})^2 - \frac{1}{12}e^{-4\phi^{(4)}}H^2_{(4)} - \frac{1}{4}G^{mp}G^{nq}(\partial_{\mu}G_{mn}\partial^{\mu}G_{pq} + \partial_{\mu}B_{mn}\partial^{\mu}B_{pq}) + \dots \right]$
where $G^{(4)}_{\mu\nu} = e^{-2\phi_4}G_{\mu\nu}, \qquad \phi^{(4)} = \phi - \frac{1}{4}\ln\det G_{mn}$

last term: metric on the space of metric/B-field-deformations

compute g_{ab}

SU(3) decomposition of metric

$$\delta G_{mn} = \left[\delta G_{mn}\right]_{\mathbf{8}} + \left[\delta G_{mn}\right]_{\mathbf{6}+\mathbf{\overline{6}}} = \delta J + \delta \Omega + \delta \overline{\Omega}$$

 \Rightarrow deformations form product of special geometries $\mathcal{M} = \mathcal{M}_J \times \mathcal{M}_\Omega$ with [Hitchin]

$$g_{ab} = \partial_a \partial_b (K_J + K_\Omega), \qquad e^{-K_J} = \int_{Y_6} J \wedge J \wedge J, \qquad e^{-K_\Omega} = \int_{Y_6} \Omega \wedge \overline{\Omega}$$

Remarks:

- same as for Calabi-Yau manifolds [Strominger; Candelas, de la Ossa] (since dJ, $d\Omega$ do not appear)
- additional scalars/two-forms from RR-sector

$$\Rightarrow \mathcal{M} = \mathcal{M}_{SK}^V \times \mathcal{M}_{QK}^H \supset \mathcal{M}_J \times \mathcal{M}_{\Omega}$$

• convenient formulation of N = 2: \Rightarrow [de Wit, Samtleben, Trigiante]

compute \vec{P}

from supersymmetry transformation of gravitino

$$\delta\psi_{A\,\mu} = D_{\mu}\varepsilon_A + i\gamma_{\mu}S_{AB}\varepsilon^B + \dots, \qquad S_{AB} = \frac{i}{2}e^{\frac{1}{2}K_V}\vec{\sigma}_{AB}\vec{P}, \qquad A = 1,2$$

IIA:

$$P^{1} + iP^{2} = e^{\frac{1}{2}K_{\Omega} + \phi^{(4)}} \int_{Y_{6}} e^{-(B+iJ)} \wedge d\Omega, \qquad P^{3} = e^{2\phi^{(4)}} \int_{Y_{6}} e^{-(B+iJ)} \wedge F_{A}$$

 $\underline{\mathsf{IIB}} \qquad \qquad F \equiv \sum_{\text{RR-forms}} F^{\text{RR}}$

$$P^{1} + iP^{2} = e^{\frac{1}{2}K_{J} + \phi^{(4)}} \int_{Y_{6}} \Omega \wedge de^{-(B+iJ)} , \qquad P^{3} = e^{2\phi^{(4)}} \int_{Y_{6}} \Omega \wedge F_{\mathsf{B}}$$

Remarks:

- potential: $V = V(\vec{P}, \partial \vec{P})$ (includes NS-flux H_3 & RR-fluxes F_A, F_B)
- torsion $d\Omega$, dJ appear in \vec{P} but not in K

Manifolds with $SU(3) \times SU(3)$ structure:

In type II one can be more general: [Grana,Waldram,JL] choose different spinors η^1, η^2 for the two gravitini $\Psi^{1,2}$ each spinor defines SU(3) — together $\underline{SU(3) \times SU(3)}$ structure $SU(3) \times SU(3)$ structure: characterized by pair $J^{1,2}, \Omega^{1,2}$

more convenient formalism: define pure spinors Φ^+, Φ^- of SO(6, 6)

$$\Phi^{+} = e^{B} \eta^{1}_{+} \otimes \bar{\eta}^{2}_{+} = \sum \Phi^{+}_{\text{even}} , \qquad \Phi^{-} = e^{B} \eta^{1}_{+} \otimes \bar{\eta}^{2}_{-} = \sum \Phi^{+}_{\text{odd}} ,$$

SU(3) structure ($\eta^1=\eta^2$): $\Phi^+=e^{B+iJ}\ ,\qquad \Phi^-=\Omega\ ,$

Couplings for $SU(3) \times SU(3)$ compactifications

- \Rightarrow decompose 10d fields under $SO(1,3) \times SU(3) \times SU(3)$
- $\Rightarrow \text{ impose "standard } N = 2" \text{ (no massive gravitino multiplets)} \\\Rightarrow \text{ no } (\mathbf{3}, \mathbf{1}) + (\mathbf{1}, \mathbf{3})$

 \Rightarrow insert into D = 10 action: $\mathcal{M} = \mathcal{M}_{\Phi^+} \times \mathcal{M}_{\Phi^-}$

with
$$e^{-K_{\Phi^+}} = \int_{Y_6} \langle \Phi^+, \overline{\Phi}^+ \rangle$$
, $e^{-K_{\Phi^-}} = \int_{Y_6} \langle \Phi^-, \overline{\Phi}^- \rangle$

where $\langle \Phi^+, \overline{\Phi}^+ \rangle = \Phi_0^+ \wedge \overline{\Phi}_6^+ - \Phi_2^+ \wedge \overline{\Phi}_4^+ + \Phi_4^+ \wedge \overline{\Phi}_2^+ - \Phi_6^+ \wedge \overline{\Phi}_0^+$, etc.

IIA:
$$P^1 + iP^2 = e^{\frac{1}{2}K_{\Phi^-} + \phi^{(4)}} \int_{Y_6} \langle \Phi^+, d\Phi^- \rangle, \qquad P^3 = e^{2\phi^{(4)}} \int_{Y_6} \langle \Phi^+, F_A \rangle$$

IIB:
$$P^1 + iP^2 = e^{\frac{1}{2}K_{\Phi^+} + \phi^{(4)}} \int_{Y_6} \langle \Phi^-, d\Phi^+ \rangle$$
, $P^3 = e^{2\phi^{(4)}} \int_{Y_6} \langle \Phi^-, F_\mathsf{B} \rangle$

Mirror symmetry

➡ for Calabi-Yau manifolds:

'every' Y has a mirror manifold $ilde{Y}$ with

$$h^{1,1}(Y) = h^{1,2}(\tilde{Y}) , \qquad h^{1,2}(Y) = h^{1,1}(\tilde{Y}) ,$$

$$\mathcal{M}_J(Y) \equiv \mathcal{M}_\Omega(\tilde{Y}) , \qquad \mathcal{M}_\Omega(Y) \equiv \mathcal{M}_J(\tilde{Y}) .$$

manifestation in string theory:

IIA in background $R_{1,3} imes Y ~\equiv$ IIB in background $R_{1,3} imes ilde{Y}$

useful for computing instanton correction to the large volume limit

Mirror symmetry with fluxes and generalized geometries

[Grana, Minasian, Petrini, Tomasiello; Gurrieri, Micu, Waldram, JL; Grana, Waldram, JL]

so far only in the large volume (supergravity) limit

 $\mathcal{M}_{\Phi^+}(Y) \equiv \mathcal{M}_{\Phi^-}(\tilde{Y}), \qquad \mathcal{M}_{\Phi^-}(Y) \equiv \mathcal{M}_{\Phi^+}(\tilde{Y}), \qquad \vec{P}(Y) \equiv \vec{P}(\tilde{Y}),$

for

$$\Phi^+(Y) = \Phi^-(\tilde{Y}) , \qquad \Phi^-(Y) = \Phi^+(\tilde{Y}) , \qquad F_A(Y) = F_B(\tilde{Y})$$

with

$$\mathrm{d}\,\mathrm{Im}\Phi^-=0$$

 \Rightarrow (generalized) half-flat geometry

 \Rightarrow type IIA and type IIB compactification are equivalent !

Non-geometric backgrounds

[Dabholkar,Hull; Mathai,Rosenberg; Shelton,Taylor,Wecht; Grange,Schäfer-Nameki]

idea:

 Y_6 can be a <u>T-fold</u> (structure group includes T-duality)

- is well defined in string theory
- arises as mirror dual of certain class of fluxes (magnetic fluxes)
- can be discussed in terms of $SU(3) \times SU(3)$ formalism developed

[Grana,Waldram,JL]

conjecture:

Non-geometric backgrounds can also be classified in terms of $SU(3)\times SU(3)$ structure

 \Rightarrow G-structures can be extended to non-geometrical backgrounds

Non-perturbative dualities with flux

[Curio,Klemm,Körs,Lüst; Micu,JL]

Non-perturbative duality:

Heterotic on $K3 \times T^2 \leftrightarrow$ Type IIA on Calabi-Yau threefold

r Heterotic: gauge-field flux on K3:

$$\int_{\gamma^i} F^A = \theta^{Ai} , \qquad i = 1, \dots, 22$$

internal b becomes charged and potential is induced

$$Db^i = db^i - \theta^i_A A^A$$
, $V_{\rm het} \neq 0$

rightarrow proposed dual: type IIA on specific SU(3)-structure manifold

<u>checks</u>: Killing vectors, consistency of V with gauged supergravity problem: duality in hypermultiplet sector!

Rewrite ten-dimensional supergravity in N = 2-form [de Wit,Nicolai]

- \Rightarrow decompose 10d fields under $SO(1,3) \times SU(3) \times SU(3)$
- $\Rightarrow \text{ impose "standard } N = 2" \text{ (no massive gravitino multiplets)} \\\Rightarrow \text{ no } (\mathbf{3}, \mathbf{1}) + (\mathbf{1}, \mathbf{3})$
 - \Rightarrow ten-dimensional fields fall into N = 2 multiplets of SO(1,3)
- \Rightarrow insert into ten-dimensional action but do not integrate over Y_6
- G define space of metric deformations as before
- resulting geometries are again special Kähler geometries with

$$e^{-K_J} = J \wedge J \wedge J$$
, $e^{-K_\Omega} = \Omega \wedge \overline{\Omega}$

IIA: $P^{1} + iP^{2} = e^{\frac{1}{2}K_{\Omega} + \phi^{(4)}} e^{-(B+iJ)} \wedge d\Omega$, $P^{3} = e^{2\phi^{(4)}} e^{-(B+iJ)} \wedge F_{A}$ IIB: $P^{1} + iP^{2} = e^{\frac{1}{2}K_{J} + \phi^{(4)}} \Omega \wedge de^{-(B+iJ)}$, $P^{3} = -e^{2\phi^{(4)}} \Omega \wedge F_{B}$

Summary

- \clubsuit compactifications on manifolds with $SU(3)\times SU(3)$ structure
 - \Rightarrow product of special geometries

 $\Rightarrow K = K_{\Phi^+} + K_{\Phi^-}$ is independent on torsion

- ➡ potential depends on torsion and background fluxes
- S mirror symmetry and (some) non-perturbative dualities hold

(in the supergravity limit)

- \Rightarrow non-geometric backgrounds can be included in the $SU(3)\times SU(3)$ formalism
- S landscape seems even richer than previously thought