Generalized $\mathrm{N}=2$ Compactifications

Jan Louis

Universität Hamburg

based on collaboration with:
Mariana Graña, Sebastien Gurrieri, Andrei Micu, Silvia Vaula, Dan Waldram

30 Years of Supergravity, Paris, October 2006

Introduction

String Theory: strings moving in 10d space-time background
\Rightarrow contact with "our world": compactification
\Rightarrow choose space-time background:

$$
M_{4} \times Y_{6}
$$

$M_{4}: 4$ dim. space-time
Y_{6} : compact manifold \Rightarrow determines amount of supersymmetry

$$
\Rightarrow \text { fruitful interplay supersymmetry } \leftrightarrow \text { geometry }
$$

recently: interplay supersymmetry \leftrightarrow generalized geometry
purpose of this talk: review these developments for $N=2$ theories

Type II string compactification:

Lorentz group of space-time background $\quad M_{10}=M_{4} \times Y_{6}$ decomposes

$$
\operatorname{Spin}(1,9) \rightarrow \operatorname{Spin}(1,3) \times \operatorname{Spin}(6)
$$

spinors decompose accordingly: $\quad \mathbf{1 6} \rightarrow(\mathbf{2}, \mathbf{4}) \oplus(\overline{\mathbf{2}}, \overline{4})$
demand that two supercharges $Q^{1,2}$ exist $(N=2)$
\Rightarrow nowhere vanishing, globally defined spinor η needs to exist on Y_{6}
\Rightarrow structure group of Y_{6} has to be reduced

$$
\operatorname{Spin}(6) \rightarrow S U(3) \quad \text { s.t. } \quad \mathbf{4} \rightarrow \mathbf{3}+\mathbf{1}
$$

$\Rightarrow Y_{6}$ has $S U(3)$-structure $\quad[G r a y$, Hervella, Salamon, Chiossi, Hitchin, ...]

Supersymmetry of the background

gravitino transformation law

$$
\delta \Psi=\nabla \eta+(\gamma \cdot F) \eta+\ldots, \quad F=\text { background flux }
$$

\Rightarrow supersymmetric background $\delta \Psi=0$

- $F=0$ and $\nabla \eta=0 \quad \Rightarrow Y_{6}$ is Calabi-Yau manifold
[Candelas,Horowitz,Strominger,Witten]
- $F \neq 0$ and $\nabla \eta \neq 0 \quad \Rightarrow Y_{6}$ has $S U(3)$ structure
[Strominger, ...]
\leftrightharpoons non-supersymmetric backgrounds $\delta \Psi \neq 0$

$$
\Rightarrow F \neq 0 \quad \text { and } / \text { or } \quad \nabla \eta \neq 0 \quad \Rightarrow Y_{6} \text { has } S U(3) \text { structure }
$$

\Rightarrow analyze manifolds with flux and $S U(3)$ structure

Manifolds with $S U(3)$ structure:
characterized by two tensors J, Ω (follows from existence of η)
$\Rightarrow(1,1)$-form

$$
J_{m n}=\eta^{\dagger} \gamma_{[m} \gamma_{n]} \eta, \quad d J \neq 0
$$

\Rightarrow almost complex structure

$$
I_{m}^{n}=J_{m p} g^{p n}, \quad I^{2}=-1, \quad N(I) \neq 0
$$

c $(3,0)$-form

$$
\Omega_{m n p}=\eta^{\dagger} \gamma_{[m} \gamma_{n} \gamma_{p]} \eta, \quad d \Omega \neq 0
$$

\Rightarrow Remarks:

- $d J, d \Omega \sim$ (intrinsic) torsion of Y_{6}
- manifolds are not complex, not Kähler, not Ricci-flat
- manifolds are classified in terms of $S U(3)$ rep. of $d J, d \Omega$
- Calabi-Yau:

$$
\nabla \eta=0 \Rightarrow d J=d \Omega=N(I)=0
$$

$\underline{N=2}$ low energy effective action

$$
\mathcal{S}=\int_{M_{4}} \frac{1}{2} R-g_{a b}(z) D_{\mu} z^{a} D^{\mu} z^{b}-V(z)+\ldots
$$

z^{a} : scalar fields
$\Rightarrow g_{a b}$ metric on the scalar manifold $\mathcal{M}=\mathcal{M}_{\mathrm{SK}}^{V} \times \mathcal{M}_{\mathrm{QK}}^{H}$
$\mathcal{M}_{\text {SK }}^{V}$: special Kähler manifold (vector multiplet sector)
$\mathcal{M}_{\mathrm{QK}}^{H}$: quaternionic Kähler manifold (hypermultiplet sector)
द V determined by Killing prepotential \vec{P}
next: compute $g_{a b}, \vec{P}$ for $S U(3)$ structure manifolds
\Rightarrow decompose 10 d fields under $S O(1,3) \times S U(3)$
\Rightarrow Impose "standard $N=2$ " (no massive gravitino multiplets)
\Rightarrow no $S U(3)$ triplets $\Rightarrow d(J \wedge J)=0$ and $d \Omega^{3,1}=0$
\Rightarrow insert into $D=10$ action:

$$
\begin{aligned}
S_{\mathrm{NS}}= & \int d^{10} x \sqrt{g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right] \\
= & \int d^{10} x \sqrt{g^{(4)}}\left[R^{(4)}-2\left(\partial \phi^{(4)}\right)^{2}-\frac{1}{12} e^{-4 \phi^{(4)}} H_{(4)}^{2}\right. \\
& -\frac{1}{4} G^{m p} G^{n q}\left(\partial_{\mu} G_{m n} \partial^{\mu} G_{p q}+\partial_{\mu} B_{m n} \partial^{\mu} B_{p q}\right)+\ldots \\
\text { ere } & G_{\mu \nu}^{(4)}=e^{-2 \phi_{4}} G_{\mu \nu}, \quad \phi^{(4)}=\phi-\frac{1}{4} \ln \operatorname{det} G_{m n}
\end{aligned}
$$

where
last term: metric on the space of metric/ B-field-deformations
compute $g_{a b}$
$S U(3)$ decomposition of metric

$$
\delta G_{m n}=\left[\delta G_{m n}\right]_{8}+\left[\delta G_{m n}\right]_{6+\overline{6}}=\delta J+\delta \Omega+\delta \bar{\Omega}
$$

\Rightarrow deformations form product of special geometries $\mathcal{M}=\mathcal{M}_{J} \times \mathcal{M}_{\Omega}$ with [Hitchin]

$$
g_{a b}=\partial_{a} \partial_{b}\left(K_{J}+K_{\Omega}\right), \quad e^{-K_{J}}=\int_{Y_{6}} J \wedge J \wedge J, \quad e^{-K_{\Omega}}=\int_{Y_{6}} \Omega \wedge \bar{\Omega}
$$

Remarks:

- same as for Calabi-Yau manifolds [Strominger; Candelas, de la Ossa] (since $d J, d \Omega$ do not appear)
- additional scalars/two-forms from RR-sector

$$
\Rightarrow \mathcal{M}=\mathcal{M}_{S K}^{V} \times \mathcal{M}_{Q K}^{H} \supset \mathcal{M}_{J} \times \mathcal{M}_{\Omega}
$$

- convenient formulation of $N=2: \Rightarrow$ [de Wit, Samtleben, Trigiante]
compute \vec{P}
from supersymmetry transformation of gravitino
$\delta \psi_{A \mu}=D_{\mu} \varepsilon_{A}+i \gamma_{\mu} S_{A B} \varepsilon^{B}+\ldots, \quad S_{A B}=\frac{i}{2} e^{\frac{1}{2} K_{V}} \vec{\sigma}_{A B} \vec{P}, \quad A=1,2$
IIA:
$P^{1}+i P^{2}=e^{\frac{1}{2} K_{\Omega}+\phi^{(4)}} \int_{Y_{6}} e^{-(B+i J)} \wedge d \Omega, \quad P^{3}=e^{2 \phi^{(4)}} \int_{Y_{6}} e^{-(B+i J)} \wedge F_{\mathrm{A}}$
IIB

$$
F \equiv \sum_{\mathrm{RR} \text {-forms }} F^{\mathrm{RR}}
$$

$P^{1}+i P^{2}=e^{\frac{1}{2} K_{J}+\phi^{(4)}} \int_{Y_{6}} \Omega \wedge d e^{-(B+i J)}, \quad P^{3}=e^{2 \phi^{(4)}} \int_{Y_{6}} \Omega \wedge F_{\mathrm{B}}$
Remarks:

- potential: $V=V(\vec{P}, \partial \vec{P})$ (includes NS-flux H_{3} \& RR-fluxes F_{A}, F_{B})
- torsion $d \Omega, d J$ appear in \vec{P} but not in K
$\underline{\text { Manifolds with } S U(3) \times S U(3) \text { structure: }}$
In type II one can be more general:
[Grana,Waldram,JL]
choose different spinors η^{1}, η^{2} for the two gravitini $\Psi^{1,2}$
each spinor defines $S U(3)$ - together $\underline{S U(3) \times S U(3) \text { structure }}$
$\underline{S U(3) \times S U(3) \text { structure: } \quad \text { characterized by pair } J^{1,2}, \Omega^{1,2}, ~}$
more convenient formalism: define pure spinors Φ^{+}, Φ^{-}of $S O(6,6)$

$$
\Phi^{+}=e^{B} \eta_{+}^{1} \otimes \bar{\eta}_{+}^{2}=\sum \Phi_{\text {even }}^{+}, \quad \Phi^{-}=e^{B} \eta_{+}^{1} \otimes \bar{\eta}_{-}^{2}=\sum \Phi_{\mathrm{odd}}^{+}
$$

$S U(3)$ structure $\left(\eta^{1}=\eta^{2}\right)$:

$$
\Phi^{+}=e^{B+i J}, \quad \Phi^{-}=\Omega
$$

Couplings for $S U(3) \times S U(3)$ compactifications

\Rightarrow decompose 10 d fields under $S O(1,3) \times S U(3) \times S U(3)$
\Rightarrow impose "standard $N=2$ " (no massive gravitino multiplets)
\Rightarrow no $(3,1)+(1,3)$
\Rightarrow insert into $D=10$ action: $\quad \mathcal{M}=\mathcal{M}_{\Phi^{+}} \times \mathcal{M}_{\Phi^{-}}$
with $\quad e^{-K_{\Phi^{+}}}=\int_{Y_{6}}\left\langle\Phi^{+}, \bar{\Phi}^{+}\right\rangle, \quad e^{-K_{\Phi^{-}}}=\int_{Y_{6}}\left\langle\Phi^{-}, \bar{\Phi}^{-}\right\rangle$
where $\left\langle\Phi^{+}, \bar{\Phi}^{+}\right\rangle=\Phi_{0}^{+} \wedge \bar{\Phi}_{6}^{+}-\Phi_{2}^{+} \wedge \bar{\Phi}_{4}^{+}+\Phi_{4}^{+} \wedge \bar{\Phi}_{2}^{+}-\Phi_{6}^{+} \wedge \bar{\Phi}_{0}^{+}$, etc.

IIA: $\quad P^{1}+i P^{2}=e^{\frac{1}{2} K_{\Phi^{-}}+\phi^{(4)}} \int_{Y_{6}}\left\langle\Phi^{+}, d \Phi^{-}\right\rangle, \quad P^{3}=e^{2 \phi^{(4)}} \int_{Y_{6}}\left\langle\Phi^{+}, F_{\mathrm{A}}\right\rangle$

IIB: $\quad P^{1}+i P^{2}=e^{\frac{1}{2} K_{\Phi+}+\phi^{(4)}} \int_{Y_{6}}\left\langle\Phi^{-}, d \Phi^{+}\right\rangle, \quad P^{3}=e^{2 \phi^{(4)}} \int_{Y_{6}}\left\langle\Phi^{-}, F_{\mathrm{B}}\right\rangle$

Mirror symmetry

\Rightarrow for Calabi-Yau manifolds:
'every' Y has a mirror manifold \tilde{Y} with

$$
\begin{array}{rlrl}
h^{1,1}(Y) & =h^{1,2}(\tilde{Y}), & h^{1,2}(Y) & =h^{1,1}(\tilde{Y}) \\
\mathcal{M}_{J}(Y) & \equiv \mathcal{M}_{\Omega}(\tilde{Y}), & \mathcal{M}_{\Omega}(Y) \equiv \mathcal{M}_{J}(\tilde{Y})
\end{array}
$$

manifestation in string theory:
IIA in background $R_{1,3} \times Y \equiv$ IIB in background $R_{1,3} \times \tilde{Y}$
useful for computing instanton correction to the large volume limit

Mirror symmetry with fluxes and generalized geometries

[Grana,Minasian,Petrini,Tomasiello; Gurrieri,Micu,Waldram,JL; Grana,Waldram,JL]
so far only in the large volume (supergravity) limit

$$
\mathcal{M}_{\Phi^{+}}(Y) \equiv \mathcal{M}_{\Phi^{-}}(\tilde{Y}), \quad \mathcal{M}_{\Phi^{-}}(Y) \equiv \mathcal{M}_{\Phi^{+}}(\tilde{Y}), \quad \vec{P}(Y) \equiv \vec{P}(\tilde{Y})
$$

for

$$
\Phi^{+}(Y)=\Phi^{-}(\tilde{Y}), \quad \Phi^{-}(Y)=\Phi^{+}(\tilde{Y}), \quad F_{A}(Y)=F_{B}(\tilde{Y})
$$

with

$$
\mathrm{d} \operatorname{Im} \Phi^{-}=0
$$

\Rightarrow (generalized) half-flat geometry
\Rightarrow type IIA and type IIB compactification are equivalent!

Non-geometric backgrounds

[Dabholkar,Hull; Mathai,Rosenberg; Shelton,Taylor,Wecht; Grange,Schäfer-Nameki]
idea:
Y_{6} can be a T-fold (structure group includes T-duality)

- is well defined in string theory
- arises as mirror dual of certain class of fluxes (magnetic fluxes)
- can be discussed in terms of $S U(3) \times S U(3)$ formalism developed
[Grana,Waldram,JL]
conjecture:
Non-geometric backgrounds can also be classified in terms of $S U(3) \times S U(3)$ structure
$\Rightarrow G$-structures can be extended to non-geometrical backgrounds

Non-perturbative dualities with flux

[Curio,Klemm,Körs,Lüst; Micu,JL]
Non-perturbative duality:
Heterotic on $K 3 \times T^{2} \leftrightarrow$ Type IIA on Calabi-Yau threefold
\Rightarrow Heterotic: gauge-field flux on $K 3$:

$$
\int_{\gamma^{i}} F^{A}=\theta^{A i}, \quad i=1, \ldots, 22
$$

internal b becomes charged and potential is induced

$$
D b^{i}=d b^{i}-\theta_{A}^{i} A^{A}, \quad V_{\text {het }} \neq 0
$$

\leftrightharpoons proposed dual: type IIA on specific $S U(3)$-structure manifold
checks: Killing vectors, consistency of V with gauged supergravity
problem: duality in hypermultiplet sector!

Rewrite ten-dimensional supergravity in $N=2$-form
\Rightarrow decompose 10d fields under $S O(1,3) \times S U(3) \times S U(3)$
\Rightarrow impose "standard $N=2$ " (no massive gravitino multiplets)
\Rightarrow no $(3,1)+(1,3)$
\Rightarrow ten-dimensional fields fall into $N=2$ multiplets of $S O(1,3)$
\Rightarrow insert into ten-dimensional action but do not integrate over Y_{6}
\Rightarrow define space of metric deformations as before
\Rightarrow resulting geometries are again special Kähler geometries with

$$
e^{-K_{J}}=J \wedge J \wedge J, \quad e^{-K_{\Omega}}=\Omega \wedge \bar{\Omega}
$$

IIA: $\quad P^{1}+i P^{2}=e^{\frac{1}{2} K_{\Omega}+\phi^{(4)}} e^{-(B+i J)} \wedge d \Omega, \quad P^{3}=e^{2 \phi^{(4)}} e^{-(B+i J)} \wedge F_{\mathrm{A}}$
IIB: $\quad P^{1}+i P^{2}=e^{\frac{1}{2} K_{J}+\phi^{(4)}} \Omega \wedge d e^{-(B+i J)}, \quad P^{3}=-e^{2 \phi^{(4)}} \Omega \wedge F_{\mathrm{B}}$

Summary
\Rightarrow compactifications on manifolds with $S U(3) \times S U(3)$ structure
\Rightarrow product of special geometries
$\Rightarrow K=K_{\Phi^{+}}+K_{\Phi^{-}}$is independent on torsion
\Rightarrow potential depends on torsion and background fluxes
\Rightarrow mirror symmetry and (some) non-perturbative dualities hold (in the supergravity limit)
\Rightarrow non-geometric backgrounds can be included in the $S U(3) \times S U(3)$ formalism
\Rightarrow landscape seems even richer than previously thought

