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Prologue

• I have been one of the users of supergravity in my scientific life, but I

have never inhaled.

• I have never met J. Scherk, but I have worked on two (of the many)

aspects of his mark in theoretical physics:

♠ Anti-gravity, aka BPS states.

♠ Geometrical Supersymmetry breaking (as originally conceived by J.

Scherk and J. Schwarz).
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Ouverture

• Supersymmetry has spread its magic over the last 40 decades

• It quickly met, head on, gravity to form supergravity and raise the stakes.

• Supergravity quickly teamed up with string theory in an unparalleled
match to dominate theoretical attempts at unification in the last two
decades.

• The Supergravity/String theory match was turbulent at first. String
theorists looked with suspicion or disdain at supergravity. Supergravity
theorists felt for a while out of place and time.

• It is supersymmetry and the need to understand strong coupling limits
that provided a meeting point, and since the mid-nineties the two directions
go hand-in-hand.

• It is the meeting point, via BPS multiplets, supersymmetry and its break-
ing, and non-perturbative effects, that I will review here. The review will
be short, and dominated by the things I understand best.
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The supersymmetry algebra and BPS states

• The key to BPS multiplets and their magic lies in the special properties
of the supersymmetry algebra.

{QI
α, QJ

β} = εαβZIJ , {Q̄I
α̇, QJ

β̇
} = εα̇β̇Z̄IJ , {QI

α, Q̄J
α̇} = δIJ 2σ

µ
αα̇Pµ

I = 1,2, · · · ,N .
• Invariance under the U(N ) R-symmetry that rotates Q, Q̄.

• Massive representations. Go to the rest frame P ∼ (M,~0).

{QI
α, Q̄J

α̇} = 2Mδαα̇δIJ , {QI
α, QJ

β} = {Q̄I
α̇, Q̄J

β̇
} = 0

• Define the 2N fermionic harmonic creation and annihilation operators

AI
α =

1√
2M

QI
α , A†I

α =
1√
2M

Q̄I
α̇

• Start with the Clifford vacuum |Ω〉, (annihilated by the AI
α) and act with A†I

α .

total number of states =
2N∑
n=0

(2N
n

)
= 22N

• Massless representations. Go to the frame P ∼ (−E,0,0, E)

{QI
α, Q̄J

α̇} = 2

(
2E 0

0 0

)
δIJ
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QI
2, Q̄

I
2̇
= 0 for such reps. The representation is 2N -dimensional. This is a trivial example

of a BPS rep.

• Non-zero central charges. Skew-diagonalize ZIJ with real positive skew-eigenvalues
Zm.

{Qam
α , Q̄bn

α̇ } = 2Mδαα̇δabδmn , {Qam
α , Qbn

β } = Znεαβεabδmn

• Define

Am
α =

1√
2
[Q1m

α + εαβQ2m
β ] , Bm

α =
1√
2
[Q1m

α − εαβQ2m
β ]

{Am
α , A†n

β } = δαβδmn(2M + Zn) , {Bm
α , B†n

β } = δαβδmn(2M − Zn)

• From Unitarity → Bogomolnyi bound

M ≥ max

[
Zm

2

]

• Assume 0 ≤ r ≤ N/2 of the Zm = 2M . Then 2r of the B-oscillators vanish identically.

We are left with 2N − 2r creation and annihilation operators. The representation has

22N−2r states. The maximal case, has as many states as the massless multiplet.
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BPS states and non-perturbative physics

• Central charges depend on couplings and vevs.

• Massive BPS states can become massless without interference from other
multiplets. The inverse is also true.

• Massive BPS states are absolutely stable in large regions of the moduli
space. They can be reliably extrapolated at strong coupling

• There are special effective field theory couplings that obtain quantum
corrections only from BPS states. They are termed “BPS-saturated cou-
plings”. They have special properties, but they typically include the lowest energy

relevant couplings

• Helicity supertrace formulae are at the heart of the connection between
BPS states and quantum corrections to effective couplings.

• All successes of duality conjectures and non-perturbative determinations
of EFTs à la Seiberg-Witten rely on BPS-saturated couplings.
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Helicity supertraces

• The role of helicity supertraces in β-function calculations and in issues of supersymmetry
breaking is known since 1981 Curtright-81, Ferrara+Savoy+Girardello-81

• It was realized that they are central in quantitative tests of duality conjectures
Bachas+Kiritsis-96

Gregori+Kiritsis+Kounnas+Obers+Petropoulos+Pioline-97
Bachas+Fabre+Kiritsis+Obers+Vanhove-97

Kiritsis+Obers-97
Gregori+Kounnas+Petropoulos-98

• In 4d they are defined as

B2n(R) = TrR[(−1)2λλ2n]

• The “helicity-generating function” of a given supermultiplet R

ZR(y) = Str y2λ .

• For a particle of spin j we have

Z[j] = (−)2j
(y2j+1 − y−2j−1

y − y−1

)
massive , Z[j] = (−)2j(y2j + y−2j) massless

• The supertrace of the n-th power of helicity can be extracted from the generating
functional through

Bn(R) = (y2 d

dy2
)n ZR(y)|y=1

• An N = 2 example:This is relevant for the two derivative N=2 effective action

B0(any) = 0 , B2(Mλ) = (−1)2λ+1 , B0(Sj) = (−1)2j+1j(j + 1) , B2(Mj) = 0

• For N = 4 B0 = B2 = 0, B4(L) = B6(L) = 0, B4(I) = 0
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The BPS mass formula:the N=4 paradigm

• We consider N=4 supergravity coupled to n vector multiplets. We take

n=22, relevant to the heterotic/T6 compactifications or type II/K3×T2

• The scalar space is SU(1,1)/U(1)× O(6,22)/(O(6)×O(22)). The first

part is parameterized by the complex S field while the second by an O(6,22)

symmetric matrix M,

MT = M , MTLM = L , L =




0 16 0

16 0 0

0 0 −116




In the heterotic theory it is a function of the internal components of G, B, AI

S = S1 + iS2 = a + i e−2φ

• The gauge and scalar action is

L ∼
[
−4

∂µS∂µS̄

ImS2
− 2ImS(M−1)ijF

i
µνF j,µν + 2ReS LijF

i ∧ F j + Tr(∂µM∂µM−1)

]
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There is a perturbative invariance under O(6,22,Z) transformations

M → Ω MΩT , Fµν → Ω Fµν , Ω ∈ O(6,22, Z)

with electric charges transforming as

ei → Ωijej

• Finally there is electric magnetic duality

S → aS + b

cS + d
, M → M , F i

µν → (c ReS + d)F i
µν + c ImS (ML)ij

∗F j
µν

• We parametrize the electric and magnetic charges of generic dyons

~Qe =
1√

2 ImS
M(~α + ReS ~β) , ~Qm =

1√
2

L ~β , ~α, ~β ∈ ZZ28

so that they satisfy the Dirac-Schwinger-Zwanziger-Witten quantization

condition.
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Electric-Magnetic duality

• The BPS mass formula can be expressed in two equivalent ways
Cvetic+Youm-95, Cvetic+Tseytlin-95

M2
BPS =

ImS

4

[
Qt

eM̃+Qe + Qt
mM̃+Qm + 2

√
(Qt

eM̃+Qe)(Q
t
mM̃+Qm)− (Qt

eM̃+Qm)2
]

=
1

4ImS
(αt + Sβt)M+(α + S̄β) +

1

2

√
(αtM+α)(βtM+β)− (αtM+β)2

with M+ = M + L and M̃+ = LM+L.

• It is O(6,22,Z) invariant

α → Ω α , β → Ω β ,

and SL(2,Z)S invariant

~α

~β


 →


 a −b

−c d





~α

~β




• The square-root factor is proportional to the difference of the two central

charges squared.
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• It is zero when ~β ∼ α and the we have 1/2 BPS multiplets. Otherwise

we have 1/4 BPS multiplets.

• For perturbative BPS states of the heterotic string, ~β = 0.

M2
BPS,pert =

1

4 ImS
αt ·M+ · α =

1

4 ImS
p2
L

• The multiplicity of 1/2 perturbative heterotic BPS states is given by the

B4 helicity formula:

dN states with N =
1

2
αt · L · α ,

1

η24
=

∞∑

N=−1

dN qN

• The non-perturbative multiplicity is conjectured to be
Dijkgraaf+Verlinde+Verlinde-96

dNe,Nm,Ns states with Ne =
1

2
αt ·L·α , Nm =

1

2
βt ·L·β , Ns = αt ·L·β
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1

Φ(Ω)
=

∑

Ne,Nm,Ns

dNe,Nm,Ns e−2πi(Neρ+Nmτ+Nsv) , Ω =


ρ v

v τ




• It correctly accounts for the associated black-hole entropy of dyonic

branes (1/4 BPS).

S = π
√

(αt · L · α)(βt · L · β)− (αt · L · β)2

• Recently, even the 1/2 BPS black-holes have been accounted by the

perturbative multiplicity formula.
Dabholkar-04,Sen-05, Dabholkar+Denef+Moore+Pioline-05
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An N=2 truncation

• We may freeze the (4,22) moduli, and focus on the remaining (2,2+16)

associated with a single T2.

• This is also an N=2 truncation, appropriate for K3×T2 compactifications.

• The T, U and W i moduli are defined as

G =
T2 − 1

2U2

∑
i(ImWi)2

U2

(
1 U1

U1 |U |2

)
, B =

(
T1 −

∑
i ReWiImWi

2U2

) (
0 1

−1 0

)

Wi = −Y i
2 + UY i

1 , K = −log[T2U2 − 1

2

∑

i

ImW 2
i ]
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• The BPS mass formula now is
Kiritsis+Kounnas-97

M2
BPS =

∣∣∣∣−m1U + m2 + Tn1 + (TU − 1
2

∑
i W2

i )n2 + Wiq
i+

4 S2

(
T2U2 − 1

2
∑

i ImW2
i

)

+
S[−m̃1U + m̃2 + T ñ1 + ñ2(TU − 1

2
∑

i W2
i ) + q̃iWi]

∣∣∣∣
2

4 S2

(
T2U2 − 1

2
∑

i ImW2
i

)

• Invariant under SL(2,ZZ)×O(2,18,ZZ)

• O(2,18,ZZ) acts in the standard fashion. SL(2,ZZ) acts by interchanging
electric and magnetic charges.

S →− 1

S
,




mi

ni

qi

m̃i

ñi

q̃i




→




m̃i

ñi

q̃i

−mi

−ni

−qi




, S → S + 1 ,




mi

ni

qi

m̃i

ñi

q̃i




→




mi − m̃i

ni − ñi

qi − q̃i

m̃i

ñi

q̃i




,
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Heterotic/type-II duality and branes

• heterotic/T6 is non-perturbatively equivalent to type II/K3×T2.

The simple tests:

• The non-perturbative states (monopoles) on heterotic side are funda-
mental particles on type II and vice versa. The heterotic NS5-brane on T 4 is dual

to the perturbative type IIA string and vice versa.
Hull+Townsend-94, Witten-95, M. Duff-95

• The charged states qi 6= 0 are RR states in the type II side. The non-
abelian completion comes from the type-II D-branes.

Hull+Townsend-94, Witten-95

• BPS multiplicities agree.
Bershadsky+Sadov+Vafa-96

• The F4 thresholds on the two side quantitatively agree (One-loop ↔ tree
level).

Kiritsis+Obers+Pioline-00

• Indirect tests: upon reduction of susy: heterotic on K3×T2 ∼ type-II on
CY (elliptic K3 fibration).

Kachru+Vafa-95, Ferrara+Harvey+Strominger+Vafa-95
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Matching the type-II BPS spectrum

The key: emergence of massless vectors

• C3 and C1 on K3, give rise to (4,20) vectors, matching the Hodge diamond

of K3.

• The charged states are: D4 branes wrapped on K3, D0 branes and D2

branes wrapped on the (3,19) cycles dual to the two-forms. This generates

the Γ4,20 lattice where the integers are wrapping and multiplicity numbers

for the D-branes.

Upon descent to 4 dimensions we haveΓ2,2×Γ4,20 → Γ6,22 There for (2,2)

from the vectors are NS-NS while the rest (4,20) are RR.

BPS multiplets ..., E. Kiritsis
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The magnetic spectrum and the duality

• On the heterotic side, the magnetic states arise from the NS5-brane. Wrapped around
T 6 it gives rise to a magnetic copy of the electric spectrum. The associated masses scale
according to the BPS formula as

|S|2/S2 ∼ 1

g2
s

• On the type-II side, the missing states are also generated by the NS5 branes wrapped
around K3×T 2.
• Heterotic/type II duality involves

S ↔ T

and a dualization of the NS two-form that translates into:

T ↔ S ,




m1

m2

n1

n2

qi



→




m1

m2

m̃2

−m̃1

qi




,




m̃1

m̃2

ñ1

ñ2

q̃i



→




−n2

n1

ñ1

ñ2

q̃i




• These transformations are valid, even if we include the (4,4) part of the lattice.
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Spontaneous supersymmetry breaking (à la

Scherk-Schwarz)

• The Scherk-Schwarz Susy breaking has been successfully implemented in

string theory
Rohm-84, Kounnas+Porrati-88,Ferarra+Kounnas+Porrati+Zwirner-89, Kounnas+Rostand-90

• It has been shown to be generated by appropriate freely-acting orbifolds.
Kiritsis+Kounnas-97

• We will study here first the N = 4 → N = 2 partial breaking in the toroidal

heterotic string. We will then use BPS data and duality to construct non-

perturbative models of susy breaking.
Kiritsis+Kounnas+Petropoulos+Rizos-96-98

• To start, we choose moduli to factorize the lattice

Γ6,22 → Γ2,18 × Γ4,4
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• We consider an orbifold that acts as a ZZN rotation on Γ4,4 and by a ZZN translation

ε/N , with ε ≡ (εL, εR, ζ) on Γ2,18. The rotation breaks half of the supersymmetry

• Modular invariance implies

ε2

2
≡ εL · εR −

1

2
ζ · ζ = 1 mod N2

• T-duality acts both on moduli (T, U, Wi) and the shift vector ε. ε2 is T-duality invariant.

• The mass of the two gravitini:

M2
gravitino =

∣∣∣∣−m1U + m2 + Tn1 + (TU − 1
2

∑
i W2

i )n2 + Wiq
i
∣∣∣∣
2

4 S2

(
T2U2 − 1

2
∑

i ImW2
i

)

m · εR + n · εL − q · ζ = ±1 mod N

• Many solutions , but the two lightest ones are the massive gravitini. The rest are KK
descendants. This depend on the region of moduli space.

• The massive gravitons are BPS states of the unbroken N=2 supersymmetry.

• The full BPS spectrum (half-BPS vector multiplets and hypermultiplets can be easily
computed via the B2 helicity supertrace.
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It is given by the O(2,18) BPS mass formula. In the “untwisted” sector

M2
BPS =

∣∣∣−m1U + m2 + Tn1 + (TU − 1
2

∑
i W

2
i )n2 + Wiqi

∣∣∣
2

4 S2

(
T2U2 − 1

2

∑
i ImW 2

i

)

They are hypermultiplets when

m · εR + n · εL − q · ζ = even

and vector-like multiplets when

m · εR + n · εL − q · ζ = odd

In the twisted sector

(m, n, q) →
(

m +
εL

2
, n +

εR

2
, q +

ζ

2

)

BPS multiplets ..., E. Kiritsis
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Spontaneous versus hard supersymmetry breaking

• We would like to compare spontaneous SUSY breaking à la SS and ”hard”

susy breaking.

• Consider a Z2 orbifold action that breaks susy. All massless gravi-

tini are removed from the spectrum. The spectrum up to Ms is non-

supersymmetric.

• Compare with a similar orbifold where the Z2 action is accompanied by a

Z2 shift on a circle of radius R. Here the gravitini have masses ∼ 1/R

♠When R → ∞ supersymmetry is restored. R > 1 is the softly broken

region.

♣When R → 0, the massive gravitini decouple and the vacuum is identical

to the hard susy-breaking one (provided susy is not completely broken)

BPS multiplets ..., E. Kiritsis
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Generic partial spontaneous susy breaking

• By appropriate non-free action we may break susy in various other ways:

♠ N = 4 → N = 1

♠ N = 4 → N = 0

By accompanying these actions with lattice shifts we obtain vacua with
various type of partial supersymmetry breaking.

Simple illustrative Examples:

• N = 4 → N = 0: Heterotic string in finite temperature: (−1)F plus Z2
translation along Euclidean time.

Rohm-84, Attick+Witten-88
Kounnas+Ronstant-90

Antoniadis+Derendiger+Kounnas-98

• N = 4 → N = 1: ZZ2 × ZZ2 action on T2 × T2 × T2 with a translation
in the transverse torus.

Kiritsis+Kounnas-97, Gregori+Kounnas+Rizos-99
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(Internal) Fluxes and supersymmetry breaking

(the prehistory)

• It was realized early on this supersymmetry breaking could be interpreted

as due to special discrete internal fluxes
Kounnas-87, Kiritsis+Kounnas-97

• The (discrete) perturbations have the form

∆S ∼
∫

d2z F a
ij [ψiψj −X(i∂Xj)] J̄a

They are constrained (quantized) by requiring preservation of world-sheet susy

• The appropriate discrete operator U = e
∮

dz F a
ij [ψiψj−X(i∂Xj)]

can be

constructed by fermionization of XI.

• They generate non-vanishing auxiliary fields in 4d.

17



• For example the N = 4 → N = 2 breaking is due to a self-dual “flux”,

F34 = −F55.

• Their type-II duals correspond to special points of flux compactifications

with both RR and NS fluxes turned on.
Kiritsis+Kounnas-97

Since then, several advances:

• Superpotentials have been advanced to deal with fluxes
Taylor+Vafa-99, Gukov+Witten+Vafa-01

• The effects of non-trivial fluxes in the type II context was resurrected

with different motivation (warping) several years later
Giddings+Kachru+Polchinski-01

• Supersymmetry breaking was rediscussed in this framework, together with

the important issue of moduli stabilisation.
Kachru+Schultz+Trivedi-02

Kachru+Kallosh+Linde+Trivedi-03

BPS multiplets ..., E. Kiritsis
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Duality and non-perturbative supersymmetry

breaking

• We consider for simplicity a heterotic Z2 freely-acting orbifold with a shift

vector ε acting on Γ2,18.

• According to the “adiabatic argument” a similar action on the type II

side will give a dual ground-state.
Vafa+Witten-95

The Z2 rotation acts as (−1)FL accompanied by an involution e that changes

the sign of 16 of the self-dual two-forms on K3.

• The Γ2,18 (electric) shift vector ε = (εL, εR, ζ) gives Z2 phases to various

states:

• The (0,16) shift can be associated with (discrete) RR fluxes threading

the appropriate cycles of K3.

18



• To see further the correspondence, I recall the heterotic/type-II map on

T2 charges:

T ↔ S ,




m1

m2

n1

n2

qi




→




m1

m2

m̃2

−m̃1

qi




,




m̃1

m̃2

ñ1

ñ2

q̃i




→




−n2

n1

ñ1

ñ2

q̃i




• If the shift acts on (m1, m2) in heterotic, it remains perturbative in type

II. The gravitino masses are functions of the geometric moduli.

• If the shift acts on the (0,16) lattice in heterotic, it affects non-perturbative,

D-brane related (electric) states in type II. The gravitino masses now also

involve the Wilson lines that in type-II are RR fields.

• If the shift is along windings (n1, n2), then it affects only non-perturbative

magnetic states in type II. For example a shift in n2 gives a gravitino mass
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in type two of the form

M2
BPS =

∣∣∣∣S
∣∣∣∣
2

4 T2

(
S2U2 − 1

2
∑

i ImW2
i

)

in units of the Planck scale. The gravitino is a NS5-related soliton.

• In perturbation theory this is similar to a hard breaking N = 4 → N = 2.

• In global supersymmetry, this has been described by using magnetic Fayet-

Iliopoulos terms.
Antoniadis+Partouche+Taylor-95

BPS multiplets ..., E. Kiritsis
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A general non-perturbative N = 4 → N = 2

breaking

• We will choose a ZZ2 action for concreteness.

• Choose an electric and a magnetic ZZ2 SS shift vector (ε, ε̃).

• Satisfying a generalization of modular invariance condition
Orbit of (ε2, ε̃2,2ε · ε̃) = (1,0,0) mod 4.

• States satisfying qe ·ε+qm · ε̃ = 1 mod 2 with lowest mass are the massive
gravitini.

• In the even sector (h = h̃ = 0), states with qe · ε + qm · ε̃ = even/odd are
hyper/vector multiplets

• In sectors with h or h̃ 6= 0, the qe, qm are shifted appropriately by half-
integers.

BPS multiplets ..., E. Kiritsis
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Non-perturbative BPS multiplicities

The strategy:

(a) Calculate the perturbative multiplicities using the helicity supertraces

(b) extend them to magnetic dyons, using the DVV arguments

•

F̄1 =
ϑ̄2
3ϑ̄2

4

η̄24
, F̄± =

ϑ̄2
2(ϑ̄

2
3 ± ϑ̄2

4)

η̄24

associated with the sublattices

F1 ↔
Γ2,18[

0
0]± Γ2,18[

0
1]

2
(vectors or hypers)

F± ↔
Γ2,18[

1
0]± Γ2,18[

1
1]

2
(hypers)
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• The derive the non-perturbative extension we first rewrite the perturbative generating

functions as

F1 =
1

η̄24
χ

[
0
1

]
, F± =

1

η̄24

(
χ̄

[
1
0

]
± χ̄

[
1
1

])

χ̄
[
h
g

]
=

1

8 η̄6

∑

a,b

(−)h ϑ̄4[a+h
b+g ] ϑ̄4[a−h

b−g ] ϑ̄[1+h
1+g ] ϑ̄[1−h

1−g ].

At genus-2 h and g become ~h = (h, h̃) and ~g = (g, g̃) in correspondence with the

“electric” and “magnetic” charge shifts.

ϑ̄[a + h
b + g ](τ̄) → ϑ̄

[
~a + ~h
~b + ~g

]
(τ̄ ij).

Then, the non-perturbative multiplicities are generated by

F

[
~h
~g

]
= Φ(τ̄ ij) χ̄

[
~h
~g

]
(τ̄ ij),

where Φ(τ̄ ij) is the N = 4 multiplicity function

• The expansion of the genus-2 result is similar to the N = 4 case.
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String thresholds and SS supersymmetry breaking

• String threshold corrections in vacua with spontaneously broken susy,
have rather different properties.

• The calculations can be done either by integrating one-loop amplitudes

Kaplunovsky-87, Dixon+Kaplunovsky+Louis-91

or using the background field formalism
Kounnas+Kiritsis-94, Petropoulos+Rizos-96

Kiritsis+Kounnas+Petropoulos+Rizos-96, Bachas+Fabre-96

• Unlike the linear behavior in the decompactification volume, a logarithmic
behavior is observed

Kiritsis+Kounnas+Petropoulos+Rizos-96-98

lim
T2→∞

1

g2
∼ logT2 +O

(
e−T2

)

• There are similar universality N = 2 properties as in the case of usual
orbifolds.
• The non-perturbative prepotential in the N = 2 case can be calculated
by duality techniques. No known technique for general non-perturbative SS
breaking.
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Supersymmetry breaking in orientifolds

• The qualitative features of supersymmetry breaking by gaugino condensa-
tion in the heterotic string are similar to SS supersymmetry breaking along
the eleventh dimension

Antoniadis+Quiros-97

• This led to SS supersymmetry breaking on orientifolds
Antoniadis+Dudas+Sagnotti-98

Antoniadis+D’Appollonio+Dudas+Sagnotti-98
Angelantonj+Antoniadis+Förger-99

Two options:

♠Translations parallel to branes break susy in the open sector

♠Translation transverse to branes leaves massless brane spectrum super-
symmetric.

• Alternative sources of susy breaking: internal magnetic fields on D-branes
Bachas-96

Angelantonj+Antoniadis+Dudas+Sagnotti-00
Blumenhagen+Goerlich+Kors+Lüst-00
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Epilogue

• Spontaneous supersymmetry breaking in string theory followed the cue

of Scherk and Schwarz in 1979

• Its original formulation was tied to the idea of an internal flux

• It was later realized it is equivalent to freely acting orbifolds.

• In conjunction with BPS techniques, it gave insights into the

non-perturbative structure of spontaneously broken extended supergravity

theories.

• It is one of the two most popular mechanisms of breaking susy in string

theory.

• It is one of the successful examples of the interplay between string

theory and supergravity.
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Detailed plan of the presentation

• Title page 0 minutes

• Plan 1 minutes

• Ouverture 3 minutes

• The supersymmetry algebra and BPS states 7 minutes

• BPS states and non-perturbative physics 9 minutes

• Helicity supertraces 12 minutes

• The BPS mass formula:the N=4 paradigm 19 minutes

• An N=2 truncation 22 minutes

• Heterotic/type-II duality and branes 24 minutes

• Matching the type-II BPS spectrum 25 minutes

• The magnetic spectrum and the duality 27 minutes

• Spontaneous supersymmetry breaking (à la Scherk-Schwarz) 33 minutes

• Spontaneous versus hard supersymmetry breaking 35 minutes

• Generic partial spontaneous susy breaking 37 minutes
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• (Internal) Fluxes and supersymmetry breaking (the prehistory) 41 minutes

• Duality and non-perturbative supersymmetry breaking 45 minutes

• A general non-perturbative N = 4 → N = 2 breaking 49 minutes

• Non-perturbative BPS multiplicities 51 minutes

• String threshold correction and SS supersymmetry breaking 52 minutes

• Supersymmetry breaking in orientifolds 53 minutes

• Epilogue 55 minutes
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