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Supergravity gaugings and some string 
and field theory phenomena
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(Extended) supergravities have many vector fields.

The ungauged version (all vector fields abelian) can in general 
be deformed by imposing a non-abelian gauge algebra: “gauged 
supergravity”.

Then, covariantization of derivatives and interactions, a scalar 
potential, gravitino mass terms, ...

A rich phenomenology: spontaneous susy breaking, 
cosmological constant, masses, ...

Irrelevant in the visible sector [ MSSM ]: extended susy does 
not apply (chirality).

Relevant in the moduli sector of string theory, in particular 
N=4 (16 supercharges).
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”Realistic” string constructions are 16 supercharge systems 
(heterotic, type I, orientifolds of type II, bulk + brane).

Reduced to D=4, 16 supercharges is N=4 susy.

Phenomenology requires (the “phenomena”):

Supersymmetry breaking, give masses to scalars (moduli 
problem), ...
An acceptable cosmological constant.
Appropriate low-energy soft breaking terms.
[ The standard model ] ...

Mostly about N=4, D=4 supergravity, as an effective 
description of string compactifications with fluxes
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Supersymmetry broken by compactification, branes, local 
sources.

Deformations of “simple” compactifications needed:

“Flux compactifications”.

Difficult to solve the deformed geometry.

Why study especially this geometry ?

Effective, low-energy supergravity approach:

N=4, D=4 supergravity deformed by gauging.

Parameters of the effective supergravity are the “gauging 
structure constants”.

These are also the flux parameters ...

4
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An example of flux superpotential, in a IIA 
orientifold / Z2 x Z2 orbifold

Flux coefficients should verify consistency (Jacobi-like) constraints 
for a consistent gauging !

The orbifold breaks N=4 to N=1.

W = Λ111 + i Λ ′

111
S + i Λ112 (T1 + T2 + T3) − Λ ′

112
S (T1 + T2 + T3)

+i Λ114 (U1 + U2 + U3) + Λ113 (T1U1 + T2U2 + T3U3)
−Λ122 (T1T2 + T1T3 + T2T3)
−Λ124 (T1U2 + T1U3 + T2U1 + T2U3 + T3U1 + T3U2) − i Λ222 T1T2T3

For specific flux coefficients, unbroken supersymmetry, anti-de 
Sitter geometry, the seven moduli stabilized (and massive), six (?) 
(out of seven) axions stabilized.
	 [ with 14 scalars, the analysis can be performed because 
	 supersymmetry does not break.  ]	

Kounnas, Petropoulos, 
Zwirner, JPD.
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Possible sources of IIA fluxes   [ orientifold (D6) / Z2xZ2 orb.] :
 ✸Geometric / twisted tori / Scherk-Schwarz / internal spin   
     connection:

 ✸Form-fluxes: H3 (NS-NS), F0, F2, F4, F6 (R-R, with massive   
     IIA parameter and Freund-Rubin flux).

The sixteen supercharges algebra dictates conditions on the flux 
coefficients, either in D=4, N=4 (consistency of the supergravity 
gauging), or in D=10 (consistency of the string compactification 

background.

iS, iU1, iU2, iU3

−iT1T2T3, −T1T2, −T2T3, −T3T1, iT1, iT2, iT3, 1

−ST1, −ST2, −ST3, T1U2, T2U2, T3U3,

−T1U2, −T2U3, −T3U1, −T2U1, −T3U2, −T1U3
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Basics of N=4, D=4 supergravity

N=4 ungauged: Das / Cremmer, Scherk / Cremmer, Scherk, Ferrara 
(77-78).

Gauged: Freedman, Schwarz (78) / Gates, James, Zwiebach (83)

Vector multiplet couplings, G/H: Chamseddine (81)/ ... / Ferrara, JPD

Using superconformal calculus [ Kaku, Townsend, van 
Nieuwenhuizen ]: de Roo / Bergshoeff, Koh, Sezgin / de Roo, 
Wagemans, ...

✸ Supergravity multiplet:   6 vector fields, supergravity 
 dilaton in SU(1,1)/U(1).
✸ n vector multiplets, each with six real scalars.
✸ Explicit S-duality from SU(1,1)/U(1).
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✸ A unique scalar sigma-model structure:
SU(1, 1)

U(1)
×

SO(6, n)

SO(6) × SO(n)

✸ Parameters are “some kind of” structure constants of 
 the algebra gauged by the 6+n vector fields: the GAUGING.

✸ In the formulation given by de Roo, Wagemans, ... , 
	 known to be incomplete in the description of its gaugings.
	 dRW: mostly semi-simple (compact or non-compact) 
	 gaugings. More can be done, in particular use the dilaton 
	 SU(1,1) duality symmetry in the gauge algebra.

✸ Recent progress using the formalism developed by de Wit, 
 Samtleben and Trigiante: Schön, Weidner (0602024) ... 
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Electric-magnetic duality

9

Ungauged supergravities include non-minimal couplings of abelian 
gauge fields, depending on field strengths only.

Field equations and Bianchi identities

∂µG̃A
µν = 0, G̃A

µν ≡ −2
δL

δF A µν

∂µF̃ A
µν = 0, F̃ A

µν =
1

2
εµνρσF A ρσ

Electric-magnetic duality:  G ⊂ Sp(2m,R)   [Gaillard, Zumino]
(F A

µν , GA
µν) −→ (F A ′

µν , GA ′

µν )

Not a symmetry of the Lagrangian, 
generates different Lagrangians with equivalent field equations.
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Non-trivial scalar - gauge boson couplings lead in general to 
reduced electric-duality symmetry:

N=4: 
SU(1,1) arises in the supergravity multiplet: the true duality 	 	  
	 	 	 	 	 	 	 	 	 	 	 	 	 	   symmetry. 
SO(m,6) is a global “electric” symmetry of the action. 

The gauge algebra is embedded in the duality algebra G. 
Gauge bosons can be electric or magnetic.
Scalar couplings of electric and magnetic field strengths are 
dictated by SU(1,1), and are different. 

N=8 : E7,7 ⊂ Sp(56,R), 

N=4 : SU(1,1) x SO(m,6) ⊂ Sp(12+2m,R), [m vector multiplets]
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Gaugings, the embedding tensor
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Following de Wit, Samtleben, Trigiante (0212239, 0311225, 0507289,...), 
Schön, Weidner (0602024), [ Petropoulos, Prezas, JPD (06...) ].

Gauged generators are linear combinations of electric-magnetic 
duality generators:

XM = ΘM
A

TA

The embedding tensor

Linear action on gauge fields and magnetic duals: modify the 
theory to propagate only the original degrees of freedom. Use 
auxiliary gauge fields (antisymmetric tensors). 

Duality algebra generator

Gauged generator:
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Consistency conditions on the embedding tensor: 
(were established from explicit studies of various gauged 
supergravities and in particular of gauging of the maximal theory 
N=8 [ de Wit, Samtleben, Trigiante ]).

Firstly, of course, the algebra closes:

[XM , XN ] = XMN
P XP = XMN

P ΘP
A TA

[XM , XN ] = XMN
P XP −→ (XM)N

P = −XMN
P

Closure first implies: X(MN)
P
ΘP

A
= 0

Closure also leads to quadratic equations (generalizing Jacobi 
identities). These are hard to solve. 

Hence, is symmetric in NP.X̂MNP = XMN
Q

ΩP Q

Invariance of symplectic metric: XM [N
Q
ΩP ]Q = 0
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At the level of the full duality group Sp(2m,R), the embedding 
tensor is in the product

Fundamental (vector) x Adjoint (symmetric, 2-index)

There is a supplementary linear condition, imposed by 
supersymmetry or more generally from consistency of the 
gauging procedure (elimination of the supplementary vector 
boson modes): 

The condition removes the fully symmetric part. 

Easy to solve: defines the embedding tensor (or the X’s), up to 
Jacobi-like identities in terms of certain constant tensors of the 
duality group, the parameters of the gauged supergravity.

The symplectic metric

X(MN
Q
ΩP )Q = 0
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The case of N=4 supergravity
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Then, a Lagrangian for this gauged supergravity and a well-
defined action of the electric-duality algebra (leading to new 
equivalent Lagrangians (see Schön, Weidner).

Scalars in coset G/H = SU(1,1)/U(1) x SO(n,6)/SO(n)xSO(6)

Duality group:  G = SU(1,1) x SO(n,6)  for n vector multiplets

T̂αβ = T̂βαSU(1,1): SO(n,6): TIJ = −TJI

Vector fields strengths + duals in rep. ( 2 , n+6 ) of G.

Gauging (embedding tensor):

XαI =
1

2
ΘαI

βγ
T̂βγ +

1

2
ΘαI

JK
TJK
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Gauged algebra: [XαI , XβJ ] = XαI βJ
γJXγJ

Solving the linear constraint leads to

Gauging parameters are:
	 a pair of antisymmetric tensors:
	 a pair of SO(n,6) vectors:

fαIJK = fα[IJK]

ζI

α

de Roo et al.: the case 
electric gauging involving SO(n,6) only

ζI

α
= 0

Gaugings involving 
the SU(1,1) e.-m- 

duality

XαI =
1

2
fα I

JKTJK + ζJ
αTIJ − ζ

β
I Tαβ
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Closure constraints (quadratic equations):

ζ
γ
KζK

α = 0

ζM
(αfβ)MIJ = 0

εαβ(2ζαIζβJ + ζαMfβIJM) = 0

3f K
αI[L fβNJ]K + fαLNJζβI − 3ζα[LfβNJ]I

+3ζM
α fβM [LNηJ]I − ζ

γ
I fγLNJεαβ = 0

[ Zero norm SO(n,6) constant vectors ]

One set of              only: Jacobi identity.fα IJK

ζI

α
= 0 : Jacobi identities and a mixed condition

fα IJK = 0 :  a unique algebra
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Electric gaugings:

SU(1,1) on the supergravity dilaton: S −→

aS + ib

icS + d

A duality frame can be chosen in which only electric fields are 
used in gaugings. In this frame,        does not participate in the 
gauging. Choose then:
Supergravities are in general constructed in this frame. 

ζ1I = ζ2

I
= 0

T̂22

ζ2I : a zero length vector, unique up to SO(n,6) rotations:
	 one parameter q only.

Gauge generators: X1I =
1

2
f1I

JKTJK − ζ1

I
T11

X2I =
1

2
f2I

JKTJK − ζJ

2
TIJ − ζ1

I
T21

Axionic
shift

SO(1,1)
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Higher dimensions: how to get the electric 
subalgebra of SU(1,1) gauged

Gauge a “symmetry” acting on the dilaton, to incorporate dilaton 
shift and dilatation symmetries.

 D=5, N=4 pure supergravity, Scherk-Schwarz   
reduction to D=4 [ Villadoro, Zwirner, 0406185 ]
 Scherk-Schwarz reduction from D=10  
(heterotic N=1 case). 

DµMαβ = ∂µMαβ + gAMγζ(αMMβ)γ + gAMδζεMεδ(αεεγMβ)γ

M11 =
1

τ2

, M12 =
τ1

τ2

, M22 =
τ2

1
+ τ2

2

τ2

.

Dµτ = ∂µτ + gAM1ζ2M + g(AM2ζ2M − AM1ζ1M)τ − gAM2ζ1Mτ2

Gauge the SO(1,1) “duality twist”:
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An example: Scherk-Schwarz reduction of D=5, N=4 
supergravity

D=5: duality group SO(1,1) x SO(5,1).
Six vector fields, in 5 + 1 of global symmetry SO(5).

If obtained by dimensional reduction + truncation from D=10, 
the 6th vector is the dual of an antisymmetric tensor. Appears 
then as a “magnetic” vector after reduction D=5 to D=4. 
Direct reduction + truncation D=10 to D=4 would produce the
electric dual of this vector.

The same gauging uses then the electric or the magnetic gauge 
field, both sets of               in use. fα IJK
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Scherk-Schwarz reduction using SO(1,1):

The reduction uses a linear combination of the “dilaton SO(1,1)” 
with a second SO(1,1) ⊂ SO(1,5).

No space for nontrivial fα IJK

Then, a seven-dimensional algebra with a non-compact generator 
X, five abelian generators in SO(6,1) and the axionic dilaton shift 
Y :

When reduced to D=4: SU(1,1) x SO(6,1), seven vector fields.

[Xm, Y ] = [Xm, Xn] = 0 [X, Y ] = 2qY [X, Xn] = −qXn
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On the Scherk-Schwarz 
mechanism and N=4 gaugings

21

Ansatz for generalized dimensional reduction from D=10 to D=4:

eA
M(x, y) =

(

δ(x)γ ea
µ(x) 2κAk̂

µ(x) Φi
k̂
(x)

0 U l̂
k̂
(y) Φi

l̂
(x)

)

where δ(x) = det Φl̂

k̂

Structure constants, verifying Jacobi identities:

fk̂l̂
m̂ = (U−1)n̂

k̂
(U−1)p̂

l̂

(

∂p̂Um̂
n̂ − ∂n̂Um̂

p̂

)

[ U matrix ~ some symmetry of the action ]
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SP

MN
=

1

2
fP

MN

ωM
AB = −

1

2

(

∂MeA
N − ∂NeA

M−fP
MNeA

P

)

eNB

+
1

2

(

∂MeB
N − ∂NeB

M−fP
MNeB

P

)

eNA

−

1

2
eP AeQB

(

∂P eC
Q − ∂QeC

P −fR
P QeC

R

)

eMC

In other words, introduce non-abelian gauging:

Torsion:

For a D=10 theory reduced to D=4, a six-dimensional gauge 
algebra induced by (internal) general coordinate transformations. 
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Under internal gen. coord. transformations

gauge field with structure constants

scalar field in adjoint rep.

A
k̂
µ

Φ
k̂

l̂

Notice however δξ̂ δ(x) = fk̂l̂
k̂ξ̂l̂ δ(x)

Or use a non-trivial dilaton shift to compensate the variation:  
	 dilaton symmetries participate in the gauge algebra.

Either unimodularity condition f
k̂l̂

k̂
= 0

ξM =
(

ξµ(x), (U−1)k̂
l̂
ξ̂l̂(x)

)

Resulting D=4 gauge algebra has 
f1 ij m′ , f2 IJK = 0, ζ2i ∼ fij

j
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V ∼ fm̂n̂
k̂fl̂p̂

r̂hm̂l̂hn̂p̂hk̂r̂ + 2fm̂n̂
k̂fk̂p̂

m̂hn̂p̂

−4fm̂k̂
m̂fn̂p̂

n̂hk̂p̂

Counting parameters (heterotic Scherk-Schwarz + H3 flux)
The heterotic string does not generate (perturbatively) both sets 
of              . There are twelve vector fields, 6 vector multiplets.fα IJK

The scalar potential
has a new contribution generated by the trace of the Scherk-
Schwarz structure constants

f2 IJK = 0 :  220 numbers in f1 IJK

Scherk-Schwarz structure constants: 90 numbers
H3 flux: 20 numbers
(110 for other nongeometric fluxes generated acting with 
dualities of the effective supergravity).

[ OK with Schön, Weidner ]
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The dictionary generalized fluxes vs generalized structure 
constants is very useful in studying phenomenology of string 
vacua.

Nothing more than an effective field theory approach, but 
much simpler than working out the geometry.

The gauge algebras relevant to moduli stabilization, 
supersymmetry breaking, ... , are subtle. Requires a complete 
control of supergravity gaugings. 

Can be combined with non-perturbative contributions 
(which are not however N=4 in general), like condensate 
superpotentials.  


