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Black Holes

Black holes are classical solutions of the equations of
motion of general theory of relativity.

Each black hole is surrounded by an event horizon that
acts as a one way membrane.

Thus classically black holes behave as perfect black
bodies at zero temperature.



Introduction Microstate counting Macroscopic analysis Applications Conclusion

In quantum theory a black hole behaves as a
thermodynamic system with definite temperature, entropy
etc.

T =
κ

2π
, SBH =

A
4 GN

Bekenstein, Hawking

κ: acceleration due to gravity at the horizon of the black
hole.

A: Area of the event horizon

GN: Newton’s gravitational constant

Our units: ~ = c = kB = 1
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For ordinary objects the entropy of a system has a
microscopic interpretation.

We fix the macroscopic parameters (e.g. total electric
charge, energy etc.) and count the number of quantum
states – known as microstates – each of which has the
same charge, energy etc.

dmicro: number of such microstates

Define microscopic (statistical) entropy:

Smicro = ln dmicro

Question: Does the entropy of a black hole have a similar
statistical interpretation?
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We shall investige this question in string theory.

Which string theory?

Even though there is a unique string (M)-theory, it can exist
in many different stable and metastable phases.

Without knowing precisely which phase of string theory
describes the part of the universe we live in, we cannot
directly compare string theory to experiments.

However there are some issues, like the issues involving
black hole thermodynamics, which are universal, and
hence can be addressed in any phase of string theory.
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We shall choose to work with a convenient class of phases
of string theory with lot of supersymmetry.

Many aspects of black hole thermodynamics have been
studied in such supersymmetric phases of the theory, but
we shall focus our attention on one particular aspect.

– entropy of the black hole in the zero temperature limit
(supersymmetric, extremal black holes).

Advantage: Such a black hole is a stable state of the
theory.
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Strategy:

1. Identify a supersymmetric black hole carrying a certain
set of electric charges {Qi} and magnetic charges {Pi} and
calculate its entropy SBH(Q,P) using the
Bekenstein-Hawking formula.

Note: A general phase of string theory may have more that
one Maxwell field and hence a black hole is characterized
by multiple charges.
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2. Identify the supersymmetric quantum states in string
theory carrying the same set of charges.

These will include the fundamental strings but also other
objects in string theory e.g. D-branes, Kaluza-Klein
monopoles etc.

Calculate the number dmicro(Q,P) of these states.

3. Compare Smicro ≡ ln dmicro(Q,P) with SBH(Q,P).
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For a class of supersymmetric extremal black holes in
string theory one indeed finds a match:

A/4GN = ln dmicro

Strominger, Vafa, ...
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This agreement also opens up new questions.

The Bekenstein-Hawking formula is an approximate
formula that holds in classical general theory of relativity.

While string theory gives a theory of gravity that reduces
to Einstein’s theory when gravity is weak, there are
corrections.

Thus the Bekenstein-Hawking formula for the entropy
works well only when gravity at the horizon is weak.

Typically this requires the charges to be large.
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The calculation on the microscopic side also simplifies
when the charges are large.

Instead of doing exact counting of quantum states, we can
use approximations which give the result for large charges.
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For ordinary systems, thermodynamics provides an
approximate description that becomes exact in the limit of
large volume.

Is the situation with black holes similar, ı.e. they only
capture the information about the system in the limit of
large charge and mass?

Or, does a black hole contain exact information about the
ensemble of microstates that it describes?
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For example:

1. Do black holes encode systematically corrections to the
entropy due to finite size effect?

2. Are black holes capable of computing the distribution of
global quantum numbers among the microstates?
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In order to answer these question we need to:

1. Generalize the Bekenstein-Hawking formula to account
for ‘finite size corrections’

2. Find ways of calculating distribution of global quantum
numbers among black hole microstates.

At the same time we must develop methods for
microscopic counting that allows us to count the number
of microstates precisely, and also find the distribution of
global quantum numbers among the microstates.

In these lectures I shall try to review the progress on both
fronts.
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The role of index

The microscopic analysis is always done in a region of the
moduli space where gravity is weak and hence the states
do not form a black hole.

In order to be able to compare it with the results from the
black hole side we must focus on quantities which do not
change as we change the coupling from small to large
value.

– needs appropriate supersymmetric index.

The appropriate index in D=4 is the helicity trace index.
Bachas, Kiritsis



Introduction Microstate counting Macroscopic analysis Applications Conclusion

Suppose we have a BPS state that breaks 4n
supersymmetries.

→ there will be 4n fermion zero modes (goldstino) on the
world-line of the state.

Quantization of these zero modes will produce Bose-Fermi
degenerate states.

Thus Tr(−1)F vanishes.

Define: B2n = 1
(2n)!Tr(−1)F(2h)2n = 1

(2n)!Tr(−1)2h(2h)2n

h: third component of angular momentum in rest frame.

For every pair of fermion zero modes Tr(−1)F(2h) gives a
non-vanishing result, leading to a non-zero B2n.
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Most of our studies will be on 1/4 BPS black holes in N = 4
supersymmetric string theories in D=4.

Preserves 4 out of 16 supersymmetries

⇐ breaks 12 supersymmetries.

Thus the relevant helicity trace index is B6.

Note: Since on the microscopic side we compute an index,
we must ensure that on the black hole side also we
compute an index.

Otherwise we cannot compare the two results.
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The simplest example: Heterotic string theory on T6.

This theory has 28 gauge fields.

Thus a generic charged states is characterized by 28
dimensional electric charge vector Q and magnetic charge
vector P.

The theory has T-duality symmetry O(6,22; ZZ) under which
Q and P transform as vectors.

This allows us to define T-duality invariant bilinears in the
charges:

Q2, P2, Q · P
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More general class of N = 4 supersymmetric string
theories can be constructed by taking orbifolds of
heterotic string theory on T 6.

– CHL models Chaudhuri, Hockney, Lykken

These theories have (r + 6) U(1) gauge fields for different
values of r.

Thus Q and P are (r+6) dimensional vectors.
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In each of these theories, the index B6(Q,P) has been
computed for a wide class of charge vectors (Q,P).

In each case the result is expressed as Fourier expansion
coefficients of some well known functions Z(ρ, σ,v):

B6 = (−1)Q.P
∫

dρ
∫

dσ
∫

dv e−πi(ρQ2+σP2+2vQ·P)Z (ρ, σ, v)

Z (ρ, σ, v): explicitly known in each of the examples, and
transform as modular forms of certain weights under
subgroups of Sp(2,ZZ).

Dijkgraaf, Verlinde, Verlinde; Shih, Strominger, Yin;
David, Jatkar, A.S.; Dabholkar, Gaiotto, Nampuri;

S. Banerjee, Srivastava, A.S.; Dabholkar, Gomes, Murthy; · · ·
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General structure of Z(ρ, σ,v):

Z(ρ, σ,v) = e−2πi(aρ+bσ+cv)
∏

m,n,p

(1− e2πi(mρ+nσ+pv))−c(m,n,p)

c(m,n,p): known functions of m,n,p.

a,b,c: known constants
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It is also possible to find the systematic expansion of B6
for large charges.

In each case we find B6 < 0.

ln |B6| = π
√

Q2P2 − (Q.P)2 + f

(
Q.P
P2 ,

√
Q2P2 − (Q.P)2

P2

)
+O(charge−2)

f: a known function.
Cardoso, de Wit, Kappeli, Mohaupt; David, Jatkar, A.S.

For example, for heterotic string theory compactified on a
six dimensional torus,

f(τ1, τ2) = 12 ln τ2 + 24 ln η(τ1 + iτ2) + 24 ln η(−τ1 + iτ2)

η: Dedekind function
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On special subspaces of the parameter space of the N = 4
supersymmetric string theories in (3+1) dimensions, the
theory develops ZZN discrete symmetry generated by an
element g which commutes with supersymmetry.

Each theory has a certain set of allowed values of N.

Example: For heteroric on T6 we can have N=1,2,3,4,5,6,7,8

On these special subspaces we can define the twisted
index:

Bg
6 =

1
6!

Tr
[
(−1)2h(2h)6g

]
Like B6, this index is also protected.

– contains information on the distribution of the ZZN charge
among the members of the ensemble.



Introduction Microstate counting Macroscopic analysis Applications Conclusion

In each case we can calculate the twisted index Bg
6 , and

find that the result is again given by Fourier integrals of
modular forms of subgroups of Sp(2,ZZ).

Bg
6 = (−1)Q.P

∫
dρ
∫

dσ
∫

dv e−πi(ρQ2+σP2+2vQ·P)Zg(ρ, σ, v)

Zg are known functions.

Furthermore for large charges we find

Bg
6 = exp[π

√
Q2P2 − (Q · P)2/N + · · · ]

All these results provide us with the ‘experimental data’ to
be explained by a ‘theory of black holes’.
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Macroscopic analysis

Goal:

1. Develop tools for computing the entropy of extremal
black holes beyond the large charge limit.

2. Apply it to black holes carrying the same charges for
which we have computed the microscopic index.

3. Compare the macroscopic results with the microscopic
results.
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Step 0: Relate degeneracy to index.
A.S.; Dabholkar, Gomis, Murthy, A.S.

Bekenstein-Hawking formula gives us the degeneracy of
microstates.

How can it be used to compute the index B6?
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In general the macroscopic degeneracy / index can have
two kinds of contributions:

1. From the horizon.

2. From degrees of freedom living outside the horizon
(hair). N. Banerjee, Mandal, A.S.

Example: The fermion zero modes associated with the
broken supersymmetry generators are always part of the
hair modes.
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Horizon

Horizon

HorizonHair

Q1

Q

Q

2

n

Qhair

Qi denotes both electric and magnetic charges of the i-th
black hole.
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We shall denote the degeneracy associated with the
horizon degrees of freedom by dhor and those associated
with the hair degrees of freedom by dhair.

dhair can be calculated by explicitly identifying and
quantizing the hair modes.

To leading order dhor ∼ exp[SBH].

The total degeneracy:

∑
n

∑
{~Qi},~Qhair∑n

i=1
~Qi+

~Qhair =
~Q

{
n∏

i=1

dhor (~Qi)

}
dhair (~Qhair ; {~Qi})
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Now let us compute B6 for the same configuration.

B6 =
1
6!

Tr(−1)2h(2h)6 =
1
6!

Tr(−1)hhor+hhair(2hhor + 2hhair)
6

In four dimensions, supersymmetry→ hhor = 0.

Thus
B6 =

1
6!

Tr(−1)hhair(2hhair)
6

‖

∑
n

∑
{~Qi},~Qhair∑n

i=1
~Qi+

~Qhair =
~Q

{
n∏

i=1

dhor (~Qi)

}
B6;hair (~Qhair ; {~Qi})
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In N = 4 supersymmetric string theories the contribution
from multi-centered black holes is exponentially
suppressed.

A.S.; Dabholkar, Guica, Murthy, Nampuri

Furthermore for single centered black holes often the only
hair modes are the fermion zero modes.

In this case Qhair = 0 and B6;hair = −1.

Thus
B6(Q) = −dhor(Q)

Since dhor(Q) > 0, we get B6 < 0.

– agrees with the microscopic results.



Introduction Microstate counting Macroscopic analysis Applications Conclusion

Macroscopic formula for B6:

∑
n

∑
{~Qi},~Qhair∑n

i=1
~Qi+

~Qhair =
~Q

{
n∏

i=1

dhor (~Qi)

}
B6;hair (~Qhair ; {~Qi})

In N = 4 supersymmetric string theories the contribution
from multi-centered black holes is exponentially
suppressed.

Furthermore for single centered black holes often the only
hair modes are the fermion zero modes.

In this case Qhair = 0 and B6;hair = −1.

Thus
B6(Q) = −dhor(Q)
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Computation of dhor

To leading order dhor(Q) = exp[SBH].

Our goal will be to study corrections to this formula.

In string theory the Bekenstein-Hawking formula receives
two types of corrections:

1 Higher derivative (α′) corrections in classical string
theory.

2 Quantum (gs) corrections.

Of these the α′ corrections are captured by Wald’s
modification of the Bekenstein-Hawking formula.

Furthermore for extremal black holes this formula takes a
very simple form due to the AdS2 factor in the near horizon
geometry.
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Reissner-Nordstrom solution in D = 4:

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Define

2λ = ρ+ − ρ−, t =
λ τ

ρ2
+

, r =
2ρ− ρ+ − ρ−

2λ

and take λ→ 0 limit keeping r, t fixed.

ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)

AdS2 × S2
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Postulate: Any extremal black hole has an AdS2 factor /
SO(2,1) isometry in the near horizon geometry.

– partially proved

Kunduri, Lucietti, Reall; Figueras, Kunduri, Lucietti, Rangamani

The full near horizon geometry takes the form AdS2 × K

K: some compact space that includes the S2 factor.
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Wald’s general formula for computing higher deivative
corrections to classical black hole entropy takes a very
simple form for black holes with an AdS2 factor in the near
horizon geometry.

Swald = 2π
(

qiei −
√

det gAdS2 LAdS2

)
ei: near horizon electric fields

qi: electric charges conjugate to ei

gAdS2: metric on AdS2√
det gAdS2LAdS2: Classical Lagrangian density, evaluated

on the near horizon geometry and integrated over K.
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Quantum corrections:

What about quantum corrections?

Naive guess: apply Wald’s formula again, but replacing the
classical action by the 1PI action.

This will again give a simple algebraic method for
computing the entropy.

This prescription is not complete since the 1PI action
typically has non-local contribution due to massless states
propagating in the loops.

Nevertheless this has been used to compute corrections to
black hole entropy from local terms in the 1PI action with
significant success.
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Consider the CHL models obtained by ZZN orbifold of type
IIB on K 3× S1 × S̃1.

At tree level there are no corrections at the four derivative
level, but at one loop these theories get corrections
proportional to the Gauss-Bonnet term in the 1PI action.√

−det g∆L

= ψ(τ, τ̄)
√
−det g

{
RµνρσRµνρσ − 4RµνRµν + R2

}
τ : modulus of the torus (S1 × S̃1).

What is the effect of this term on the Wald entropy?
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Adding this correction to the supergravity action one can
calculate the correction to the entropy of a black hole in
the CHL model.

Result for the Wald entropy

π
√

Q2P2 − (Q.P)2

−ψ

(
Q.P
P2 ,

√
Q2P2 − (Q.P)2

P2

)
+O

(
1

Q2,P2,Q.P

)
ψ(τ1, τ2) ≡ (k + 2) ln τ2 + ln g(τ1 + iτ2) + ln g(−τ1 + iτ2)

g(τ): a known function computed from the coefficient of
the Gauss-Bonnet term.

– agrees exactly with the result for ln |B6(Q,P)| calculated
in the microscopic theory to order charge0.
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We shall now turn to the full quantum computation of dhor
from the macroscopic side.

In the classical limit dhor should reduce to exp[Swald].

The main tool: AdS2/CFT1 correspondence.
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Steps for computing dhor

1. Consider the euclidean AdS2 metric:

ds2 = v
(

(r2 − 1)dθ2 +
dr2

r2 − 1

)
, 1 ≤ r <∞, θ ≡ θ + 2π

= v(sinh2 η dθ2 + dη2), r ≡ cosh η, 0 ≤ η <∞

Regularize the infinite volume of AdS2 by putting a cut-off
r ≤ r0f(θ) for some smooth periodic function f(θ).

This makes the AdS2 boundary have a finite length L.
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2. Define ZAdS2: Path integral over string fields in the
euclidean near horizon background geometry weighted by

exp[−Action− iqk

∮
∂(AdS2)

dθA(k)
θ ]

{qk}: electric charges carried by the black hole under the
U(1) gauge field A(k).

3. By AdS2/CFT1 correspondence:

ZAdS2 = ZCFT1

ZCFT1 = Tr(e−LH) = d0 e−L E0

H: Hamiltonian of dual CFT1 at the boundary of AdS2.

(d0,E0): (degeneracy, energy) of the states of CFT1.



Introduction Microstate counting Macroscopic analysis Applications Conclusion

ZAdS2 = ZCFT1 = d0 e−L E0

What is CFT1?

– must be the quantum mechanics obtained by taking the
infrared limit of the brane system describing the black
hole.

This consists of a finite dimensional Hilbert space,
consisting of the ground states of the brane system in a
given charge sector.

Thus d0 is the number of ground states of the black hole.

This suggests that we identify dhor with d0.



Introduction Microstate counting Macroscopic analysis Applications Conclusion

4. Thus we can define dhor by expressing ZAdS2 as

ZAdS2 = eCL × dhor as L→∞

C: A constant

dhor: ‘finite part’ of ZAdS2 .

With this definition dhor calculates d0, ı.e. the degeneracy
of the dual CFT1.
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Note: Near the boundary of AdS2, the θ indepndent
solution to the Maxwell’s equation has the form:

Ar = 0, Aθ = C1 + C2r

C1 (chemical potential) represents normalizable mode

C2 (electric charge) represents non-normalizable mode

→ the path integral must be carried our keeping C2
(charge) fixed and integrating over C1 (chemical potential).

Thus the AdS2 path integral computes the entropy in the
microcanonical ensemble.

This is also the reason why we need to insert the boundary
term exp[−iqk

∮
∂(AdS2)

dθA(k)
θ ] in the path integral.
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Consistency check:

In the classical limit

ZAdS2 = exp[−Action− iqk

∮
∂(AdS2)

dθA(k)
θ ]

∣∣∣∣
classical

= exp
[
2π
(

qiei −
√

det gAdS2 LAdS2

)
+ CL

]
= exp [Swald + CL]

Thus dhor = exp[Swald] in the classical limit.
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Applications

1. Logarithmic corrections to the black hole entropy

– arises from one loop contribution to the path integral
from massless fields.

– requires finding the eigenvalues of the kinetic operator in
the near horizon geometry and then calculating the
determinant.

Example: A free scalar with standard kinetic term gives a
contribution to ln dhor of the form:

− 1
180

ln A
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For the quarter BPS black holes in N = 4 the calculation is
straightforward but requires calculating eigenvalues of the
kinetic operator after taking into account the mixing
between various fields.

So far the contribution from the matter multiplet fields have
been calculated.

Result: all contributions cancel Gupta, S. Banerjee, A.S.

– agrees with the microscopic results for which there is no
logarithmic contribution that depends on the number of
matter multiplets (r).
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Second application: Twisted index

Suppose we want to compute the index

Bg
6 =

1
6!

Tr
[
(−1)2h (2h)6 g

]
g: some ZZN symmetry generator.

After separating out the contribution from the hair degrees
of freedom, we see that the relevant quantity associated
with the horizon is

−Trhor((−1)2hhorg) = −Trhor(g)

What macroscopic computation should we carry out?
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By following the logic of AdS/CFT correspondence we find
that we need to again compute the partition function on
AdS2, but this time with a g twisted boundary condition on
the fields under θ → θ + 2π.

Other than this the asymptotic boundary condition must
be identical to that of the attractor geometry since the
charges have not changed

The ‘finite part’ of this partition function gives us Trhor(g).
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Recall AdS2 metric:

ds2 = v
[

(r2 − 1)dθ2 +
dr2

r2 − 1

]
= v

[
sinh2 ηdθ2 + dη2

]
The circle at infinity, parametrized by θ, is contractible at
the origin r = 1.

Thus a g twist under θ → θ + 2π is not admissible.

→ the AdS2 × S2 geometry is not a valid saddle point of the
path integral.
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Question: Are there other saddle points which could
contribute to the path integral?

Constraints:

1. It must have the same asymptotic geometry as the
AdS2 × S2 geometry.

2. It must have a g twist under θ → θ + 2π.

3. It must preserve sufficient amount of supersymmetries
so that integration over the fermion zero modes do not
make the integral vanish.

Beasley, Gaiotto, Guica, Huang, Strominger, Yin;
N. Banerjee, S. Banerjee, Gupta, Mandal, A.S.
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There are indeed such saddle points in the path integral,
constructed as follows.

1. Take the original near horizon geometry of the black
hole.

2. Take a ZZN orbifold of this background with ZZN
generated by simultaneous action of

a) 2π/N rotation in AdS2

a) 2π/N rotation in S2 (needed for preserving SUSY)

c) g.

N. Banerjee, Jatkar, A.S.; A.S.; Pioline, Murthy
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To see that this has the same asymptotic geometry as the
attractor geometry we make a rescaling:

θ → θ/N, r→ N r

The metric takes the form:

v
(

(r2 − N−2)dθ2 +
dr2

r2 − N−2

)
Orbifold action: θ → θ + 2π, φ→ φ+ 2π/N, g

The g transformation provides us with the correct
boundary condition.

The φ shift can be regarded as a Wilson line, and hence is
an allowed fluctuation in AdS2.
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The classical action associated with this saddle point, after
removing the divergent part proportional to the length of
the boundary, is Swald/N.

Thus the contribution to the twisted partition function Bg
6

from this saddle point is

Zfinite
g = exp [Swald/N]

This is exactly what we have found in the microscopic
analysis of the twisted index.
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Conclusion

Quantum gravity in the near horizon geometry contains
detailed information about not only the total number of
microstates. but also finer details e.g. the ZZN quantum
numbers carried by the microstates.

Thus at least for extremal black holes there seems to be an
exact duality between

Gravity description⇔ Microscopic description

The gravity description contains as much information as
the microscopic description, but in quite different way.
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