Gravity as a Double Copy of Gauge Theory

Cargese, June 25, 2010
Zvi Bern, UCLA
Lecture 2

Lecture 1: Scattering amplitudes in quantum field theories: On-shell methods, unitarity and twistors.
Lecture 2: Gravity as a double copy of gauge theory and applications to UV properties.
• A new duality between color and kinematics.
• Gravity as a double copy of gauge theory.
• Review of conventional wisdom on UV divergences in quantum gravity – dimensionful coupling.
• Surprising one-loop cancellations: “no triangle property”.
• Additional observations and hints of UV finiteness.
• Explicit 3,4-loop calculations so we know the exact behavior.
• Origin of cancellation – high-energy behavior.
• Five loops and beyond.
List of Papers

Research Articles:
• ZB, L. Dixon, R. Roiban, hep-th/0611086

Review Articles:
• Z. Bern, gr-qc/0206071
• Z. Bern, J. J. M. Carrasco and H. Johansson, 0902.3765 [hep-th]
• H. Nicolai, Physics, 2, 70, (2009).
• R. P. Woodard, arXiv:0907.4238 [gr-qc].
Gauge Theory Feynman Rules

\[-g f^{abc}(\eta_{\mu\nu}(k - p)_\rho + \eta_{\nu\rho}(p - q)_\mu + \eta_{\rho\mu}(q - k)_\nu) \]

\[= -ig^2 [f^{abe} f^{cde}(\eta_{\mu\rho}\eta_{\nu\lambda} - \eta_{\mu\lambda}\eta_{\nu\rho}) + f^{ade} f^{ebc}(\eta_{\mu\nu}\eta_{\rho\lambda} - \eta_{\mu\rho}\eta_{\nu\lambda}) + f^{ace} f^{ebd}(\eta_{\mu\nu}\eta_{\rho\lambda} - \eta_{\mu\lambda}\eta_{\nu\rho})] \]
Duality Between Color and Kinematics

ZB, Carrasco, Johansson

- Coupling constant
- Color factor: \(-gf^{abc}(\eta_{\mu\nu}(k_1 - k_2)_{\rho} + \text{cyclic})\)
- Momentum dependent kinematic factor

Color factors based on a Lie algebra: \([T^a, T^b] = if^{abc}T^c\)

Jacobi identity

\[f_{a_1a_2b}f_{b,a_4,a_3} + f_{a_4a_2b}f_{ba_3a_1} + f_{a_4a_1b}f_{ba_2a_3} = 0\]

Use \(1 = s/s = t/t = u/u\) to assign 4-point diagram to others.

\[
A_{\text{tree}}^4 = g^2\left(\frac{n_sc_s}{s} + \frac{n(tc_t)}{t} + \frac{n uc_u}{u}\right)
\]

Color factors satisfy Jacobi identity:

Numerator factors satisfy similar identity:

\[c_u = c_s - c_t\]
\[n_u = n_s - n_t\]

Color and kinematics satisfy similar identities
Four-Point Example

\[A_4(1^-, 2^-, 3^+, 4) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} = -i \frac{\langle 12 \rangle^2 \langle 34 \rangle^2}{st} \equiv \frac{n_s}{s} + \frac{n_t}{t} \]

\[A_4(1^-, 4^+, 2^-, 3^+) = i \frac{\langle 12 \rangle^4}{\langle 14 \rangle \langle 42 \rangle \langle 23 \rangle \langle 31 \rangle} = -i \frac{\langle 12 \rangle^2 \langle 34 \rangle^2}{tu} \equiv \frac{n_u}{u} - \frac{n_t}{t} \]

Choose e.g.: \(n_t = 0, \ n_s = n_u = -i \frac{\langle 12 \rangle^2 \langle 34 \rangle^2}{t} \) Amplitude correct

\[c_u = c_s - c_t \]
\[n_u = n_s - n_t \]

- At 4 points *any* choice which gives correct amplitudes works. Seems like a curiosity at 4 points.
- But at higher points it imposes rather non-trivial constraints on numerators. Does *not* work for Feynman diagrams.
 Must rearrange.
Duality Between Color and Kinematics

Consider five-point tree amplitude: $A_{5}^{\text{tree}} = \sum_{i=1}^{15} \frac{c_{i} n_{i}}{D_{i}}$

Claim: We can always find a rearrangement so color and kinematics satisfy the same Jacobi constraint equations.

- Color and kinematics satisfy same equations!
- Nontrivial constraints on amplitudes.

There is now a partial string-theory understanding.

Bjerrum-Bohr, Damgaard, Vanhove; Stieberger; Mafra; Tye and Zhang
Duality Between Color and Kinematics

• Conjecture states that numerators satisfying the duality can always be found.

\[A^\text{tree}_5 (1, 3, 4, 2, 5) = \frac{-s_{12}s_{45}A^\text{tree}_5 (1, 2, 3, 4, 5) + s_{14}(s_{24} + s_{25})A^\text{tree}_5 (1, 4, 3, 2, 5)}{s_{13}s_{24}} \]

• Nontrivial consequences for amplitudes

• Proof of amplitude relations in both string theory and in field theory
 — string theory based on monodromy.
 — field proof uses BCFW recursion.

ZB, Carraco, Johansson

Bjerrum-Bohr, Damgaard, Vanhove
Feng, Huang, Jia
Gravity seems so much more complicated than gauge theory.

Consider the gravity Lagrangian

\[L_{\text{gravity}} = \frac{2}{\kappa^2} \sqrt{-g} R \]

\[\kappa^2 = 32\pi G_{\text{Newton}} \]

\[g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu} \]

Infinite number of complicated interactions

Only three- and four-point interactions

Compare to Yang-Mills Lagrangian on which QCD is based

\[L_{\text{YM}} = \frac{1}{g^2} F^2 \]

Gravity seems so much more complicated than gauge theory.
Three Vertices

Standard Feynman diagram approach.

Three-gluon vertex:

\[V_{3}^{abc} = -gf^{abc}(\eta_{\mu\nu}(k_{1} - k_{2})_{\rho} + \eta_{\nu\rho}(k_{1} - k_{2})_{\mu} + \eta_{\rho\mu}(k_{1} - k_{2})_{\nu}) \]

Three-graviton vertex:

\[G_{3\mu\alpha,\nu\beta,\sigma\gamma}(k_{1}, k_{2}, k_{3}) = \]

\[
sym\left[-\frac{1}{2}P_{3}(k_{1} \cdot k_{2} \eta_{\mu\alpha} \eta_{\nu\beta} \eta_{\sigma\gamma}) - \frac{1}{2}P_{6}(k_{1\nu}k_{1\beta}\eta_{\mu\alpha}\eta_{\sigma\gamma}) + \frac{1}{2}P_{3}(k_{1} \cdot k_{2} \eta_{\mu\nu} \eta_{\alpha\beta} \eta_{\sigma\gamma}) \\
+ P_{6}(k_{1} \cdot k_{2} \eta_{\mu\alpha} \eta_{\nu\sigma} \eta_{\beta\gamma}) + 2P_{3}(k_{1\nu}k_{1\gamma}\eta_{\mu\alpha}\eta_{\beta\sigma}) - P_{3}(k_{1\beta}k_{2\mu}\eta_{\alpha\nu}\eta_{\sigma\gamma}) \\
+ P_{3}(k_{1\sigma}k_{2\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + P_{6}(k_{1\sigma}k_{1\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + 2P_{6}(k_{1\nu}k_{2\gamma}\eta_{\beta\mu}\eta_{\alpha\sigma}) \\
+ 2P_{3}(k_{1\nu}k_{2\mu}\eta_{\beta\sigma}\eta_{\gamma\alpha}) - 2P_{3}(k_{1} \cdot k_{2} \eta_{\alpha\nu} \eta_{\beta\sigma} \eta_{\gamma\mu}) \right] \]

\[k_{i}^{2} = E_{i}^{2} - \vec{k}_{i}^{2} \neq 0 \]

About 100 terms in three vertex

Naïve conclusion: Gravity is a nasty mess.

Definitely not a good approach.
People were looking at gravity the wrong way. On-shell viewpoint much more powerful.

On-shell three vertices contains all information:

\[k_i^2 = 0 \]

\[-g f^{abc}(\eta_{\mu\nu}(k_1 - k_2)_\rho + \text{cyclic}) \]

gauge theory:

\[
\begin{array}{c}
 a \\
 \mu \\
 c \\
 \rho \\
 1 \\
 \mu \\
 \nu \\
 b \\
 2
\end{array}
\]

gravity:

\[
\begin{array}{c}
 \alpha \\
 \mu \\
 \rho \\
 1 \\
 \mu \\
 \nu \\
 \beta \\
 2 \\
 \gamma
\end{array}
\]

\[i\kappa (\eta_{\mu\nu}(k_1 - k_2)_\rho + \text{cyclic}) \times (\eta_{\alpha\beta}(k_1 - k_2)_\gamma + \text{cyclic}) \]

double copy of Yang-Mills vertex.

- Using modern on-shell methods, any gravity scattering amplitude constructible solely from **on-shell 3 vertex**.
Gravity vs Gauge Theory

Consider the gravity Lagrangian

\[L_{\text{gravity}} = \frac{2}{\kappa^2} \sqrt{-g} \, R \]

\[\kappa^2 = 32\pi G_{\text{Newton}} \]

Gravity seems so much more complicated than gauge theory.
A remarkable relation between gauge and gravity amplitudes exist at tree level which we will exploit. At tree level Kawai, Lewellen and Tye have derived a relationship between closed and open string amplitudes. In field theory limit, relationship is between gravity and gauge theory where we have stripped all coupling constants.

\[M^\text{tree}_4(1, 2, 3, 4) = s_{12} A^\text{tree}_4(1, 2, 3, 4) A^\text{tree}_4(1, 2, 4, 3), \]
\[M^\text{tree}_5(1, 2, 3, 4, 5) = s_{12}s_{34} A^\text{tree}_5(1, 2, 3, 4, 5) A^\text{tree}_5(2, 1, 4, 3, 5) + s_{13}s_{24} A^\text{tree}_5(1, 3, 2, 4, 5) A^\text{tree}_5(3, 1, 4, 2, 5). \]

where we have stripped all coupling constants

\[A^\text{tree}_4 = g^2 \sum_{\text{non-cyclic}} \text{Tr}(T^{a_1}T^{a_2}T^{a_3}T^{a_4}) A^\text{tree}_4(1, 2, 3, 4) \]

Holds for any external states. See review: gr-qc/0206071

Recent field theory proof Bjerrum-Bohr, Damgaard, Feng, Sondergaard

Progress in gauge theory can be imported into gravity theories.
Gravity and Gauge Theory Amplitudes

\[
M_{4}^{\text{tree}}(1_{h}^{-}, 2_{h}^{-}, 3_{h}^{+}, 4_{h}^{+}) = \left(\frac{\kappa}{2}\right)^{2} s_{12} A_{4}^{\text{tree}}(1_{g}^{-}, 2_{g}^{-}, 3_{g}^{+}, 4_{g}^{+}) \times A_{4}^{\text{tree}}(1_{g}^{-}, 2_{g}^{-}, 4_{g}^{+}, 3_{g}^{+})
\]

\[
= \left(\frac{\kappa}{2}\right)^{2} s_{12} \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \times \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 24 \rangle \langle 43 \rangle \langle 31 \rangle}
\]

\[
\langle jl \rangle = \langle k_{j}^{-} | k_{l}^{+} \rangle = \frac{1}{2} \bar{u}(k_{j})(1 + \gamma_{5})u(k_{l}) = \sqrt{2k_{j} \cdot k_{l}} e^{i\phi}
\]

- Holds for all states appearing in a string theory.
- Holds for all states of \(N = 8 \) supergravity.
Using unitarity and KLT we express cuts of $N = 8$ supergravity amplitudes in terms of $N = 4$ amplitudes.

$$\sum_{N=8 \text{ states}} M^\text{tree}_4(-\ell_1, 1, 2, \ell_2) \times M^\text{tree}_4(-\ell_2, 3, 4, \ell_1) = s^2 \sum_{N=4 \text{ states}} \left(A^\text{tree}_4(-\ell_1, 1, 2, \ell_2) \times A^\text{tree}_4(\ell_2, 3, 4, -\ell_1) \right) \times \sum_{N=4 \text{ states}} \left(A^\text{tree}_4(\ell_2, 1, 2, -\ell_1) \times A^\text{tree}_4(\ell_1, 3, 4, -\ell_2) \right)$$

Key formula for $N = 4$ Yang-Mills two-particle cuts:

$$\sum_{N=4 \text{ states}} A^\text{tree}_4(-\ell_1, 1, 2, \ell_2) \times A^\text{tree}_4(-\ell_2, 3, 4, \ell_1) = \frac{st A^\text{tree}_4(1, 2, 3, 4)}{(\ell_1 - k_1)^2(\ell_2 - k_3)^2}$$

Key formula for $N = 8$ supergravity two-particle cuts:

$$\sum_{N=8 \text{ states}} M^\text{tree}_4(-\ell_1, 1, 2, \ell_2) \times M^\text{tree}_4(-\ell_2, \ell_3, -\ell_4, \ell_1) = istu M^\text{tree}_4(1, 2, 3, 4) \left[\frac{1}{(\ell_1 - k_1)^2} + \frac{1}{(\ell_1 - k_2)^2} \right] \left[\frac{1}{(\ell_2 - k_3)^2} + \frac{1}{(\ell_2 - k_4)^2} \right]$$

Note recursive structure!

Generates all contributions with s-channel cuts.
Higher-Point Gravity and Gauge Theory

gauge theory: \(\frac{1}{g^{n-2}} A_n^{\text{tree}}(1, 2, 3, \ldots, n) = \sum_i \frac{n_i c_i}{\prod_{\alpha_i} p_{\alpha_i}^2} \)

gravity: \(-i \left(\frac{2}{\kappa} \right)^{(n-2)} \mathcal{M}_n^{\text{tree}}(1, 2, \ldots, n) = \sum_i \frac{n_i \tilde{n}_i}{\prod_{\alpha_i} p_{\alpha_i}^2} \)

Holds if the \(n_i \) satisfy the duality. \(\tilde{n}_i \) is from 2\(^{nd}\) gauge theory.

Gravity numerators are a double-copy of gauge theory ones!

Proved using BCFW on-shell recursion relations that if duality holds, gravity numerators are 2 copies of gauge-theory ones.

Cries out for a unified description of the sort given by string theory!
Loop-level conjecture is identical to tree-level one except for symmetry factors and loop integration. Double copy works if numerator satisfies duality.
The Double Copy in String Theory

Mafra; Tye and Zhang; Bjerrum-Bohr, Damgaard, Feng, Sondergaard,

open string

$$A_n \sim \left(\int \frac{dx_1 \cdots dx_n}{\nu_{abc}} \prod_{1 \leq i < j \leq n} |x_i - x_j|^{k_i \cdot k_j} \exp \left[\sum_{i<j} \left(\frac{\epsilon_i \cdot \epsilon_j}{(x_i - x_j)^2} + \frac{k_i \cdot \epsilon_j - k_j \cdot \epsilon_i}{(x_i - x_j)} \right) \right] \right|_{\text{multi-linear}}$$

closed string

$$M_n \sim \left(\int \frac{d^2 z_1 \cdots d^2 z_n}{\Delta_{abc}} \prod_{1 \leq i < j \leq n} (z_i - z_j)^{k_i \cdot k_j} \exp \left[\sum_{i<j} \left(\frac{\epsilon_i \cdot \epsilon_j}{(z_i - z_j)^2} + \frac{k_i \cdot \epsilon_j - k_j \cdot \epsilon_i}{(z_i - z_j)} \right) \right] \right) \times \left(\prod_{1 \leq i < j \leq n} (\bar{z}_i - \bar{z}_j)^{k_i \cdot k_j} \exp \left[\sum_{i<j} \left(\frac{\bar{\epsilon}_i \cdot \bar{\epsilon}_j}{(\bar{z}_i - \bar{z}_j)^2} + \frac{k_i \cdot \bar{\epsilon}_j - k_j \cdot \bar{\epsilon}_i}{(\bar{z}_i - \bar{z}_j)} \right) \right] \right|_{\text{multi-linear}}$$

- The closed-string Koba-Nielsen integrand is a double copy of the open string one. Well known fact.
- The double copy we are talking about is after carrying out the Koba-Nielsen integration.
- The heterotic string is a particularly good way to study the color-kinematics duality because of the parallel treatment of color and kinematics. But where does duality come from?
Relations Between Planar and Nonplanar

Generally, planar is simpler than non-planar. Can we obtain non-planar from planar? The answer is yes!

Numerators satisfy identities similar to color Jacobi identities.

Non-planar contributions can be derived from planar contributions.

Interlocking set of equations restrict numerators
For $N=4$ sYM we have the ability to go to high loop orders. Go to 3 loops. (1 & 2 loops works.) Calculation very similar to earlier one with Dixon and Roiban, except now make the duality manifestly

\[c_i = c_j - c_k \implies n_i = n_j - n_k \]

\[\tau_{ij} = 2k_i \cdot l_j \]

- Duality works!
- Double copy works!
Explicit Three-Loop Check

ZB, Carrasco, Johansson (2010)

\[
n(\{ V(p_a, p_b, l_s), V(-l_s, p_c, p_d), \cdots \}) = \\
n(\{ V(p_d, p_a, l_t), V(-l_t, p_b, p_c), \cdots \}) \\
+ n(\{ V(p_a, p_c, l_u), V(-l_u, p_b, p_d), \cdots \})
\]

• Easy to check the above relation holds.
• Must check all such relations.
How can one take two copies of the gauge theory Lagrangian to give a gravity Lagrangian?

Add zero to the YM Lagrangian in a special way:

\[
\mathcal{L}'_5 = -\frac{1}{2} g^3 \left(f^{a_1 a_2 b} f^{b a_3 c} + f^{a_2 a_3 b} f^{b a_1 c} + f^{a_3 a_1 b} f^{b a_2 c} \right) f^{c a_4 a_5} \\
\times \partial_{[\mu} A^{a_1}_{\nu]} A^{a_2} A^{a_3 \mu} \frac{1}{\Box} (A^{a_4 \nu} A^{a_5 \rho}) = 0
\]

Through five points:

• Feynman diagrams satisfy the color-kinematic duality.
• Introduce auxiliary field to convert contact interactions into three-point interactions.
• Take two copies: you get gravity! \(A^\mu \tilde{A}^\nu \rightarrow h^{\mu \nu} \)

At each order need to add more and more vanishing terms.
One can continue this process but things get more complicated: Lagrangian six-point correction has ~100 terms.

- Is there a symmetry that restricts the terms?
- Can we understand the group theory structure of the vertices?
- Non-perturbative implications?
- Double copies of general classical solutions in gravity.

\[g_{\mu\nu}(x) \sim \int dy \ A_\mu(x - y) \tilde{A}_\nu(y) \]
UV Properties of gravity
Dimensionful coupling

\[\kappa = \sqrt{32\pi G_N} \]

\[\kappa p^\mu p^\nu \]

Gravity:
\[\int \frac{\prod_{i=1}^{L} dp_i^D}{(2\pi)^D} \frac{(\kappa p_j^\mu p_j^\nu)}{\text{propagators}} \]

Gauge theory:
\[\int \frac{\prod_{i=1}^{L} dDp_i}{(2\pi)^D} \frac{(g p_j^\nu)}{\text{propagators}} \]

Extra powers of loop momenta in numerator means integrals are badly behaved in the UV.

Non-renormalizable by power counting.
Quantum Gravity at High Loop Orders

A key unsolved question is whether a finite point-like quantum gravity theory is possible.

- Gravity is non-renormalizable by power counting.
 \[\kappa = \sqrt{32\pi G_N} \] Dimensionful coupling

- Every loop gains \(G_N \sim 1/M_P^2 \) mass dimension \(-2\).
 At each loop order potential counterterm gains extra
 \[R_{\nu\sigma\rho}^\mu \sim g^{\mu\kappa} \partial_\rho \partial_\nu g_{\kappa\sigma} \] or \(D^2 \)

- As loop order increases potential counterterms must have either more \(R \)'s or more derivatives
Divergences in Gravity

One loop:

\[R^2, R_{\mu\nu}^2, R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho} \]

Vanish on shell

Pure gravity 1-loop finite (but not with matter)

Two loop: Pure gravity counterterm has non-zero coefficient:

\[R^3 \equiv R^\lambda_{\mu\nu} R^{\mu\nu}_{\sigma\tau} R^{\sigma\tau}_{\lambda\rho} \]

Any supergravity:

\[R^3 \text{ is not a valid supersymmetric counterterm.} \]

Produce a helicity amplitude \((-,-,+,-,+,-)\) forbidden by susy.

\[\text{Grisaru (1977); Tomboulis (1977)} \]

The first divergence in any supergravity theory can be no earlier than three loops.

\[R^4 \text{ Bel-Robinson tensor expected counterterm} \]

\[\text{Deser, Kay, Stelle (1977); Kaku, Townsend, van Nieuwenhuizen (1977), Ferrara, Zumino (1978)} \]
The most supersymmetry allowed for maximum particle spin of 2 is $N = 8$. Eight times the susy of $N = 1$ theory of Ferrara, Freedman and van Nieuwenhuizen.

We consider the $N = 8$ theory of Cremmer and Julia.

256 massless states

\[
N = 8 : \quad 1 \quad 8 \quad 28 \quad 56 \quad 70 \quad 56 \quad 28 \quad 8 \quad 1
\]

helicity : $-2 \quad -\frac{3}{2} \quad -1 \quad -\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 1 \quad \frac{3}{2} \quad 2$

\[h^- \quad \psi_i^- \quad v_{ij}^- \quad \chi_{ijk}^- \quad s_{ijkl} \quad \chi_{ijk}^+ \quad v_{ij}^+ \quad \psi_i^+ \quad h^+\]

Reasons to focus on this theory:

• With more susy suspect better UV properties.
• High symmetry implies technical simplicity.
We are interested in UV finiteness of $N = 8$ supergravity because it would imply a new symmetry or non-trivial dynamical mechanism.

The discovery of either would have a fundamental impact on our understanding of gravity.

- Note: Perturbative finiteness is not the only issue for consistent gravity: nonperturbative completions. High energy behavior of theory.
- What symmetry or mechanism is powerful enough to render the theory finite?
Opinions from the 80’s

Unfortunately, in the absence of further mechanisms for cancellation, the analogous $N = 8$ $D = 4$ supergravity theory would seem set to diverge at the three-loop order.

Howe, Stelle (1984)

It is therefore very likely that all supergravity theories will diverge at three loops in four dimensions. … The final word on these issues may have to await further explicit calculations.

Marcus, Sagnotti (1985)

The idea that all supergravity theories diverge (at three loops) has been widely accepted for over 25 years

R^4 is expected counterterm
Where is First Potential UV Divergence in $D=4 \mathcal{N}=8$ Sugra?

Various opinions over the years:

<table>
<thead>
<tr>
<th>Loops</th>
<th>Opinion</th>
</tr>
</thead>
</table>
| 3 loops | Conventional superspace power counting | Green, Schwarz, Brink (1982)
Howe and Stelle (1989)
Marcus and Sagnotti (1985) |
| 5 loops | Partial analysis of unitarity cuts; *If* $\mathcal{N}=6$ harmonic superspace exists; algebraic renormalisation argument | Bern, Dixon, Dunbar,
Perelstein, Rozowsky (1998)
Howe and Stelle (2003,2009) |
| 6 loops | *If* $\mathcal{N}=7$ harmonic superspace exists | Howe and Stelle (2003) |
| 7 loops | *If* $\mathcal{N}=8$ harmonic superspace exists;
lightcone gauge locality arguments;
Algebraic renormalization arguments | Grisaru and Siegel (1982);
Howe, Stelle and Bossard (2009)
Vanhove; Bjornsson, Green (2010)
Kiermaier, Elvang, Freedman(2010)
Ramond Kallosh (2010) |
| 8 loops | Explicit identification of potential susy invariant counterterm with full non-linear susy | Kallosh; Howe and Lindström (1981) |
| 9 loops | *Assume* Berkovits’ superstring non-renormalization theorems can be carried over to $D=4 \mathcal{N}=8$ supergravity and extrapolate to 9 loops. Speculations on $D=11$ gauge invariance. | Green, Russo, Vanhove (2006)
(retracted) |

No divergence demonstrated above. Arguments based on lack of susy protection! We will present contrary evidence of all-loop finiteness.

To end debate, we need solid results!
Suppose we want to put an end to the speculations by explicitly calculating to see what is true and what is false:

Suppose we wanted to check superspace claims with Feynman diagrams:

If we attack this directly get $\sim 10^{20}$ terms in diagram. There is a reason why this hasn’t been evaluated.

In 1998 we suggested that five loops is where the divergence is:

This single diagram has $\sim 10^{30}$ terms prior to evaluating any integrals. More terms than atoms in your brain!

Using double copy property and unitarity method we can bypasses this Feynman diagram difficulties.
Novel $N = 8$ Supergravity UV Cancellations

A case that correct UV finiteness condition is:

$$D < \frac{6}{L} + 4 \quad (L > 1)$$

UV finite in $D = 4$
Same as $N = 4$ sYM!

Three pillars to our case:

- **Demonstration of** all-loop order UV cancellations from "no-triangle property". ZB, Dixon, Roiban
- **Identification of** tree-level cancellations responsible for improved UV behavior. ZB, Carrasco, Ita, Johansson, Forde
- **Explicit 3,4 loop calculations.** ZB, Carrasco, Dixon, Johansson, Kosower, Roiban

Key claim: The most important cancellations are generic to gravity theories. Supersymmetry helps make the theory finite, but is *not* the key ingredient for finiteness.
\[A_{n}^{1-\text{loop}} = \sum_{i} d_i I_4^{(i)} + \sum_{i} c_i I_3^{(i)} + \sum_{i} b_i I_2^{(i)} \]

• In \(N = 4 \) Yang-Mills only box integrals appear. No triangle integrals and no bubble integrals.

• The “no-triangle property” is the statement that same holds in \(N = 8 \) supergravity. Non-trivial constraint on analytic form of amplitudes.

• Unordered nature of gravity is important for this property.
N = 8 *L*-Loop UV Cancellations

From 2 particle cut:

\[
((k_1 + k_2)^2)^{2(L-2)}
\]

numerator factor

- Numerator violates one-loop “no-triangle” property.
- Too many powers of loop momentum in one-loop subamplitude.
- After cancellations behavior is same as in *N* = 4 Yang-Mills!

- UV cancellation exist to *all* loop orders! (not a proof of finiteness)
- These all-loop cancellations *not* explained by supersymmetry alone.
- Existence of these cancellations drive our calculations!

L-particle cut

\[
((l + k_4)^2)^{2(L-2)}
\]

numerator factor

1 in *N* = 4 YM

ZB, Dixon, Roiban
Higher-Point Divergences?

Add an extra leg:
1. extra $\kappa p^\mu p^\nu$ in vertex
2. extra $1/p^2$ from propagator

Adding legs generically does not worsen power count.

Cutting propagators exposes lower-loop higher-point amplitudes.

• Higher-point divergences should be visible in high-loop four-point amplitudes.
• A proof of UV finiteness would need to systematically rule out higher-point divergences.
Origin of Cancellations?

There does not appear to be a supersymmetry explanation for observed cancellations, especially as the loop order increases.

If it is not supersymmetry what might it be?
Tree Cancellations in Pure Gravity

Unitarity method implies all loop cancellations come from tree amplitudes. Can we find tree cancellations?

You don’t need to look far: proof of BCFW tree-level on-shell recursion relations in gravity relies on the existence such tree cancellations! We know they exist.

Susy not required

Consider the shifted gravity tree amplitude:

\[
k_1^\mu \rightarrow k_1^\mu + \frac{z}{2} \langle k_1^- | \gamma^\mu | k_2^- \rangle, \quad k_2^\mu \rightarrow k_2^\mu - \frac{z}{2} \langle k_1^- | \gamma^\mu | k_2^- \rangle,
\]

How does \(M(z) \) behave as

\[
z \to \infty ?
\]

\[
M(z) \to 0
\]
Loop Cancellations in Pure Gravity

Powerful new one-loop integration method due to Forde makes it much easier to track the cancellations. Allows us to link one-loop cancellations to tree-level cancellations.

Observation: Most of the one-loop cancellations observed in $N = 8$ supergravity leading to “no-triangle property” are already present in non-supersymmetric gravity. Susy cancellations are on top of these.

Proposal: This continues to higher loops, so that most of the observed $N = 8$ multi-loop cancellations are not due to susy but in fact are generic to gravity theories!
Using generalized unitarity and no-triangle hypothesis any one-loop subamplitude should have power counting of $N = 4$ Yang-Mills.

- Imposes non-trivial constraint on analytic structure of amplitudes.
- Cancellations powerful enough for UV finiteness
- Not a proof because all cuts need to be checked.
Full Three-Loop Calculation

Need following cuts:

For cut (g) have:

\[
\sum_{N=8 \text{ states}} M_4^{\text{tree}}(1, 2, l_3, l_1) \times M_5^{\text{tree}}(-l_1, -l_3, q_3, q_2, q_1) \times M_5^{\text{tree}}(3, 4, -q_1, -q_2, -q_3)
\]

Use Kawai-Lewellen-Tye tree relations

\[
M_4^{\text{tree}}(1, 2, l_3, l_1) = -i s_{12} A_4^{\text{tree}}(1, 2, l_3, l_1) A_4^{\text{tree}}(2, 1, l_3, l_1)
\]

\[
M_5^{\text{tree}}(-l_1, -l_3, q_3, q_2, q_1) = i s_{l_1 q_1} s_{l_3 q_3} A_5^{\text{tree}}(-l_1, -l_3, q_3, q_2, q_1) A_5^{\text{tree}}(-l_1, q_1, q_3, -l_3, q_2) + \{l_1 \leftrightarrow l_3\}
\]

\[\text{supergravity} \quad \Rightarrow \quad \text{super-Yang-Mills}\]

\[N = 8 \text{ supergravity cuts are sums of products of } N = 4 \text{ super-Yang-Mills cuts}\]
Complete Three-Loop $N = 8$ Supergravity Result

$$M_4^{(3)} = \left(\frac{k}{2}\right)^8 stu M_4^{\text{tree}} \sum_{S_3} \left[I^{(a)} + I^{(b)} + \frac{1}{2} I^{(c)} + \frac{1}{4} I^{(d)} + 2I^{(e)} + 2I^{(f)} + 4I^{(g)} + \frac{1}{2} I^{(h)} + 2I^{(i)} \right]$$

$$\tau_{ij} = 2k_i \cdot k_j$$

Three loops is not only UV finite it is “superfinite”—cancellations beyond those needed for finiteness in $D = 4$.

Finite for $D < 6$

All cancellations exposed.

Identical power count as $N = 4$ super-Yang-Mills
Four-Loop Construction

ZB, Carrasco, Dixon, Johansson, Roiban

\[I_i = \int d^D l_1 d^D l_2 d^D l_3 d^D l_4 \frac{N_i(l_j, k_j)}{l_1^2 l_2^2 l_3^2 l_4^2 l_5^2 l_6^2 l_7^2 l_8^2 l_9^2 l_{10}^2 l_{11}^2 l_{12}^2 l_{13}^2} \]

Determine numerators from 2906 maximal and near maximal cuts

Completeness of expression confirmed using 26 generalized cuts sufficient for obtaining the complete expression

11 most complicated cuts shown
Four-Loop Amplitude Construction

Get 50 distinct diagrams or integrals (ones with two- or three-point subdiagrams not needed).

\[M_{4}^{4\text{-loop}} = \left(\frac{\kappa}{2} \right)^{10} \sum_{S_{4}} \sum_{i=1}^{50} c_{i} I_{i} \]

\text{Integral}

Journal submission has mathematica files with all 50 diagrams

\text{symmetry factor}

\text{leg perms}

John Joseph shaved!

UV finite for \(D < 5.5 \)

It’s very finite!

“I’m not shaving until we finish the calculation” — John Joseph Carrasco

Recent world line formalism construction of Green and Bjornsson agrees with this count.
Five Loops is the New Challenge

• Recent papers argue that susy protection cannot extend beyond 7 loops.

 See Michael Green’s talk
 Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove; Vanhove;
 Green and Bjornsson; Kallosh and Ramond

• If no other cancellations, this implies a worse behavior at 5 loops than for $N = 4$ sYM theory.
Schematic Illustration of Status

- Same power count as $N=4$ super-Yang-Mills
- UV behavior unknown

All-loop UV cancellations known to exist!

- From feeding 2, 3 and 4 loop calculations into iterated cuts.

No triangle property

explicit 2, 3, 4 loop computations

behavior unproven

terms
Summary

• New duality between color and kinematics
• Gravity as a double copy of gauge theory. Checked at 3 loops!
• Unitarity method gives us means of studying this at loop level. Extremely efficient way to calculate.
• $N = 8$ supergravity has UV cancellations with no known supersymmetry argument.
 – No-triangle property implies cancellations strong enough for finiteness to all loop orders, in a class of terms.
• At four points 2, 3, 4 loops, established that cancellations are complete and $N = 8$ supergravity has the same power counting as $N = 4$ Yang-Mills.
• Understanding 5 loops and beyond is the next challenge.

Double copy property of gravity will surely continue to lead to an improved understanding of gravity theories.
Reading List: Review Articles

- L. Dixon 1996 TASI lectures hep-ph/9601359 (trees basic ideas)
- Z. Bern, L. Dixon and D. Kosower, hep-ph/9602280 (early review on loops)
- Z. Bern, gr-qc/0206071 (early applications to gravity)
- F. Cachazo and P. Svrcek, hep-th/0504194 (twistors)
- R. Woodard, arXiv:0907.4238 (gravity)
- L. Dixon, arXiv:1005.2703 (UV properties of gravity)
Further Reading

Hermann Nicolai, *Physics Viewpoint*, “Vanquishing Infinity”
http://physics.aps.org/articles/v2/70

Anthony Zee, *Quantum Field Theory in a Nutshell*, 2nd Edition is first textbook to contain modern formulation of scattering and commentary on new developments. 4 new chapters.
Some amusement

YouTube: Search “Big Bang DMV”, first hit.
From ’98 paper:

- Assumed rung-rule contributions give the generic UV behavior.
- Assumed no cancellations with other uncalculated terms.
- No evidence was found that more than 12 powers of loop momenta come out of the integrals.
- This is precisely the number of loop momenta extracted from the integrals at two loops.

Elementary power counting for 12 loop momenta coming out of the integral gives finiteness condition:

\[D < \frac{10}{L} + 2 \quad (L > 1) \]

In \(D = 4 \) finite for \(L < 5 \).

\(L \) is number of loops.

\(D^4 R^4 \) counterterm expected in \(D = 4 \), for \(L = 5 \)
Through $L = 3$ loops the correct finiteness condition is ($L > 1$):

```
“superfinite”
in $D = 4$
```

\[
D < \frac{6}{L} + 4
\]

same as $N = 4$ super-Yang-Mills

not the weaker result from iterated two-particle cuts:

```
finite
in $D = 4$
for $L = 3, 4$
```

\[
D < \frac{10}{L} + 2
\]

(old prediction)

Beyond $L = 3$, as already explained, from special cuts we have strong evidence that the cancellations continue.

All one-loop subdiagrams should have same UV power-counting as $N = 4$ super-Yang-Mills theory.

No known susy argument explains these cancellations
Cancellations at One Loop

Crucial hint of additional cancellation comes from one loop.

Surprising cancellations not explained by any known susy mechanism are found beyond four points

Two derivative coupling means $N = 8$ should have a worse power counting relative to $N = 4$ super-Yang-Mills theory.

However, we have strong evidence that the UV behavior of both theories is the same at one loop.
Some Open Problems of Direct Interest

• Gravity as the square of YM. Better understanding needed!
• Better understanding of tree-level high energy behavior $1/z^2$. Key for improved UV behaviour at loop level.
• BCJ duality gravity relations. Who ordered this?
• Role of E7(7) symmetry? Kallosh, Arkani-Hamed, Cachazo, Kaplan
Comments on Consequences of Finiteness

- Suppose $N = 8$ SUGRA is finite to all loop orders. Would this prove that it is a nonperturbatively consistent theory of quantum gravity? Of course not!
- At least two reasons to think it needs a nonperturbative completion:
 - Likely $L!$ or worse growth of the order L coefficients,
 \[\sim L! \left(\frac{s}{M_{Pl}}\right)^2 L \]
 - Different $E_{7(7)}$ behavior of the perturbative series (invariant!), compared with the $E_{7(7)}$ behavior of the mass spectrum of black holes (non-invariant!)
- Note QED is renormalizable, but its perturbation series has zero radius of convergence in α: \[\sim L! \alpha^L. \] But it has many point-like nonperturbative UV completions —asymptotically free GUTS.