
SOME COEFFICIENTS HAVE BEEN WORKED OUT CAREFULLY,

BUT SOME ARE PURELY IMPRESSIONISTIC.

1. Supersymmetric Lagrangians

We can start from theories of scalars and fermions. Gauge fields will be introduced

later. To write supersymmetric Lagrangians we will use chiral superfields. These are

defined as a representation of supersymmetry that satisfies

[Qα̇, ϕ(x)] = 0 . (1.1)

The representation is therefore constructed by acting with Qα and ∂µ. This is organized

in a superfield that satisfies Dα̇Φ = 0 and Φ is called a chiral superfield. The solution is

Φ = ϕ(y) +
√
2θψ(y) + θ2F (y) , (1.2)

with yµ = xµ + θσµθ. Note that any function of chiral superfields, W (Φi), is by itself a

chiral superfield.

The main property which will be relevant for us is that we can compute the SUSY

transformations of the F -term and get

[Qα, F ] = 0 , [Qα̇, F ] ∼ σµ
αα̇∂µψ

α . (1.3)

We see that the Q variation is a total derivative while the Q variation is zero.

Similarly, let us consider a general real superfield, R

R = · · ·+ θ
2
θλ+ θ2θλ+ θ4D . (1.4)

We can study the SUSY variations of the top component, D, and get

[Qα, D] ∼ σµ
αα̇∂µλ

α̇
, [Qα̇, D] ∼ σµ

αα̇∂µλ
α . (1.5)

We see that the variation of the top component is again a total derivative.

This gives us a general prescription for constructing supersymmetric Lagrangians

L = D + F + F . (1.6)
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The variation of each term is a total derivative and thus the action S =
∫
d4xL is SUSY-

invariant. F is the θ2 component of a function of the superfields which is called the

superpotential W (Φ) (and it is chiral, thus, independent of the complex conjugates). D

is the top component of a real function of the superfields and their complex conjugates

K(Φi,Φ
i
). This function is called the Kähler potential. A neat way to extract the top

components F , D is to write Grassman integrals
∫
d2θ,

∫
d4θ respectively. Thus we arrive

at the usual way supersymmetric Lagrangians are presented

L =

∫
d4θK(Φi,Φ

i
) +

(∫
d2θW (Φi) + c.c

)
. (1.7)

Having developed this formalism, let us give some basic examples. With a single chiral

superfield K = Φ†Φ, W = 0 corresponds to a free theory of one fermion and a complex

boson. The Lagrangian in components is

L = ϕ† ϕ+ i∂µψσ
µψ + F †F . (1.8)

We see that F is not propagating, its equation of motion implies F = 0 and thus it can be

removed from (1.8). This free theory is the simplest supersymmetric theory. The number

of bosons and fermions is the same; this is a general consequence of supersymmetry.

The free theory can be generalized to describe the supersymmetric sigma model. We

take any number N of chiral superfields Φi and a general real function K(Φi,Φ
i
). The

superpotential vanishes. This theory takes the form (after setting to zero the auxiliary

fields)

L = −gij(ϕ, ϕ
†)∂µϕ

†j∂µϕi + igij∂µψ
iσµψ

j
+ igijiΓ

i
kl(∂µϕ

k)ψlσµψ
j
+

1

4
Rijklψ

iψkψ
j
ψ
l
.

(1.9)

The first term is the conventional kinetic term in the non-linear σ-model. Physically it

describes a theory whose target space is an N complex dimensional manifold with metric

gij . The metric is related to the Kähler potential via

gij = ∂i∂jK . (1.10)

This means that the target space is a Kähler manifold. Γ and R are the connection and

Riemann tensor of this geometry, respectively.
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Let us explain a little more some of the geometric concepts involved. The metric

remains invariant under redefinitions of the Kähler function of the form

K ′(Φi,Φ
i
) = K(Φi,Φ

i
) + F (Φi) + F (Φi) . (1.11)

This can be seen from the direct definition of gij and also from the superspace La-

grangian (1.7), since
∫
d4θ acting on chiral or antichirals superfields gives a total derivative.

The bosons ϕi should be thought of as coordinates on the target space manifold.

This is natural because the physical theory is invariant under any field redefinition of the

form Φ′i = f i(Φj). The metric transforms in the usual tensorial way. However, fermions

transform as ψ′i = ∂ϕ′i

∂ϕk
ψk. This suggests that the fermions should be identified with

tangent vectors on the target space.

An example of an interesting sigma-model is obtained if we consider the target space to

be the two-sphere S2 = CP1. The theory isK = f2π log(1+|Φ|2) where f2π is proportional to

the radius-squared of the sphere. Indeed, using the formula (1.10) we get the Kähler metric

gΦΦ =
f2
π

(1+|ϕ|2)2 . This is the familiar round metric on the sphere. The distance to Φ ∼ ∞
is finite with this metric. To describe the region of infinity we need to perform a change of

variables Φ → 1/Φ. This takes the Kähler metric to itself up to a Kähler transformation

proportional to log(Φ) + log(Φ). (As we explained, this Kähler transformation does not

affect the physical theory.) Finally, one can check that this theory has the full SU(2)

isometry of the sphere. SUSY vacua are field configurations corresponding to points on

the sphere. The global SU(2) symmetry is then broken to a U(1) symmetry.

Let us now also discuss theories with nonzero superpotential function. The simplest

example is the free Kähler potential K = Φ†Φ with superpotential W = 1
2mΦ2. This

gives a mass m to the free complex boson and Weyl fermion in Φ. More generally, adding

a superpotential W (Φi) to the sigma model with Kähler potential K(Φi,Φ
j
) adds to the

theory (1.9) a scalar potential and Yukawa-type interactions

L′ = (1.9)− gij∂iW∂jW −
(
∂i∂jWψiψj + c.c.

)
. (1.12)

Again, we have solved the equations of motion of the auxiliary fields F i and their complex

conjugates. Supersymmetric field configurations should have zero energy. Since the metric

is positive definite, this means that ∂iW = 0 for all i.
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We should now discuss how to add gauge interactions. The gauge potential Aµ is

embedded in the θθ component of a real superfield V . Gauge transformations are achieved

by demanding invariance under

V → V − i(Λ− Λ) , (1.13)

with chiral Λ. It is possible to define the chiral superfield Wα = −1
4 D

2
DαV . It contains

only the gauge invariant pieces from the superfield V . The kinetic term for the gauge field

is written as

Lgaugekinetic =

∫
d2θ

1

4g2
W 2

α + c.c =
1

4
FµνF

µν +
i

g2
∂µλσ

µλ+
1

2g2
D2 . (1.14)

D is a real auxiliary field that should be integrated out. In this trivial theory it is just set

to zero by its equations of motion.

Adding charged matter is achieved by letting the superfields transform under gauge

transformations. For example, a chiral superfield of charge +1 transforms like Φ → eiΛΦ.

Then, a term like Φ†eV Φ in the Kähler potential is gauge invariant. This formalism carries

over to the non-abelian case with only few technical complications.

The simplest U(1) gauge theory has particles of charge ±1. This is called supersym-

metric QED (SQED). Its Lagrangian takes the form

L =

∫
d2θ

1

4g2
W 2

α + c.c.+

∫
d4θΦ†

+e
V Φ+ +Φ†

−e
−V Φ− . (1.15)

To see how this looks like in components we can fix a convenient gauge in which V | = V |θ =

V |θ = V |θ2 = V |
θ
2 = 0. This is called WZ gauge. (The remaining gauge transformations

are the ordinary real gauge transformations.) We also solve the equations of motion of the

auxiliary D-term (which in this case are nontrivial). Then, the scalar potential takes the

form

VD =
g2

8

(
|ϕ+|2 − |ϕ−|2

)2
. (1.16)

In addition the Lagrangian (1.15) leads to the usual gauge interaction terms and some

Yukawa-type interactions of the form −i√
2

(
ϕ+ψ+λ− ϕ†+ψ+λ− (+ ↔ −)

)
. The space of

supersymmetric field configurations is given by |ϕ+| = |ϕ−|. We can use the ordinary

gauge transformations to set ϕ− real. Hence, the moduli space is really one complex

dimensional, parameterized by arbitrary ϕ+ = reiθ.
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For the special case of U(1) gauge theories we can add a special gauge-invariant term

to the Lagrangian of the form
∫
d4θξV . This is called the Fayet-Iliopoulos term (FI-term).

(Of course, ξ is real.) It is gauge invariant because the
∫
d4θ of a chiral superfield is a total

derivative. The effect of this term is just to change the scalar potential to

VD =
g2

8

(
|ϕ+|2 − |ϕ−|2 + ξ

)2
. (1.17)

The space of SUSY vacua (moduli space) thus is still parameterized by a one complex

dimensional coordinate ϕ+ = reiθ but the metric would be different than in the case with

ξ = 0.

Let us say several more words about SQED. The theory is IR free and so is described

by the photon and the chiral superfields Φ± at low energies. It breaks down near the

Landau pole, where it needs a UV completion to make sense. The supersymmetric moduli

spaces we have discussed are not lifted by any order in perturbation theory, and thus

remain good SUSY vacua in the full quantum theory.1 This theory therefore does not

break SUSY spontaneously.

2. Examples of SUSY-Breaking Theories

SUSY-breaking theories are theories in which there are vacua with nonzero energy.

Similarly to the Goldstone phenomenon for ordinary spontaneously broken symmetries,

broken supersymmetry leads always to a massless fermion, the Goldstino.

The simplest SUSY breaking theory is just one chiral superfield Φ with a linear term

in the superpotential (sometimes referred to as the “Polonyi model”)

K =

∫
d4θΦ†Φ+

(∫
d2θfΦ+ c.c.

)
. (2.1)

From our previous discussion we see that the scalar potential in this theory is simply

a constant V = |f |2. Thus, the spectrum consists of a massless fermion ψ (this is the

Goldstino in this theory) and the scalar in this theory, ϕ is massless too. So there are

infinitely many inequivalent vacua with nonzero energy and since the theory is free they

are not lifted. Thus this theory is not really interesting.

1 This follows from the non-renormalization theorems in SUSY, we may get to it later again.
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We can modify it slightly by making the Kähler potential non-canonical

K =

∫
d4θ

(
Φ†Φ− 1

4M2
Φ2(Φ†)2

)
+

(∫
d2θfΦ+ c.c.

)
, (2.2)

with M some high cutoff scale. Now this theory is more interesting. The scalar potential

is

V =
1

1− 1
M2ϕ†ϕ

|f |2 = |f2|
(
1 +

|ϕ|2

M2
+O

(
1

M4

))
. (2.3)

Now we have a good vacuum at ϕ = 0 and there is no more infinite degeneracy as the

boson ϕ has mass |f |2/M2 in the vacuum at the origin. The fermion ψ is still massless

and plays the role of the Goldstino. This situation is very typical: scalar fields which are

not Goldstone bosons are massive and some fermions may remain massless due to various

reasons (Goldstino, ’t-Hooft matching).

One may complain that (2.2) is not renormalizable. The O’Raifeartaigh model is the

simplest renormalizable model that breaks SUSY spontaneously. The model has three

chiral superfields, the Kähler potential is canonical and the superpotential is

W = XΦ2 −mNΦ− fX . (2.4)

The conditions for the existence of a SUSY vacuum would be ϕ = 0, ϕ2 = f,mN = 2xϕ.

Clearly there is no solution. There is a SUSY breaking vacuum at Φ = N = 0. The

vacuum energy is V = |f |2. This vacuum has no tachyons for 2f < m2. However, since x

always appears together with ϕ in the scalar potential, there is no energy cost in changing

x. Thus, our vacuum, again, is part of a one-complex dimensional family of degenerate

vacua. (This is a very general property of such theories.) Unlike the previous theory (which

was free) here radiative corrections lift this pseudo-modulus space and give a positive mass

squared for x at x = 0:

V 1−loop ∼ 1

16π2

|f |2

m2
|x|2 + ... . (2.5)

Thus, the SUSY-breaking vacuum at x = 0 is gapped (besides the goldstino ψx which

is massless of course) and this constitutes the simplest construction of a controllable SUSY-

breaking model.

Homework: Analyze the theory (at tree-level) for 2f > m2. Is there an

infinite degeneracy of vacua?
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Let us now discuss some SUSY-breaking models based on the FI-term. The simplest

example is a pure U(1) gauge theory with a FI-term

L =

∫
d2θ

1

4g2
W 2

α + c.c.+

∫
d4θξV . (2.6)

The vacuum is V = g2ξ2/8. The gauge field and gaugino are massless, the gaugino is also

the Goldstino in this theory. Again, this is a boring free theory.

The model can be complicated a little to exhibit more interesting phenomena. Con-

sider two chiral Φ± superfields with U(1) charges ±1. We also include a mass term for

them and a FI-term. This is a slight generalization of SQED. Thus, the theory is

L =

∫
d2θ

1

4g2
W 2

α+c.c.+

∫
d4θ

(
Φ†

+e
V Φ+ +Φ†

−e
−V Φ− + ξV

)
+

(∫
d2θmΦ+Φ− + c.c

)
.

(2.7)

The scalar potential is

V =
g2

8

(
|ϕ+|2 − |ϕ−|2 + ξ

)2
+m2

(
|ϕ+|2 + |ϕ−|2

)
) . (2.8)

This potential does not admit any SUSY preserving vacua. Indeed, it is a sum of positive

terms that cannot be set to zero simultaneously.

The theory has several phases, depending on m2/ξ. For m2/ξ smaller than some

critical value κc the theory Higgses the gauge symmetry. For m2/ξ larger than κc the

theory breaks SUSY but without Higgsing the U(1) symmetry. (The transition at κc is of

second order.)

Homework: Find κc. For the more advanced: This theory has an R-

symmetry. Is it broken in the vacuum?

3. Brief Introduction to Strongly Coupled Theories and SUSY-Breaking

So far we have discussed mostly classical phenomena, and presented theories that

break SUSY. If our goal is to use SUSY for describing something in the real world, it must

be broken (probably spontaneously). Playing with tree-level theories is educational but

phenomenologically unmotivated, since we need to introduce the SUSY breaking scale by

hand.

Unlike other symmetries, there is a very strong non-renormalization theorem about

supersymmetry. The theorem states that Supersymmetric vacua cannot be lifted by ra-

diative corrections at any order. This means that if there is some SUSY vacuum in the
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classical theory, ϕ
(0)
i , then it will not disappear once we compute the effective potential in

perturbation theory.

This has led Witten to observe that therefore there are two options:

1. The theory has no SUSY vacua classically (in this case we say that it breaks SUSY

at tree-level).

2. The theory does have SUSY vacua classically but they are lifted by non-perturbative

effects.

Of course, option 1. is unappealing, since we would need to introduce dimensionful

parameters by hand. On the other hand, option 2 is very interesting since it means that

the SUSY-breaking scale (i.e. the fourth root of the vacuum energy density, loosely denoted

as
√
F ) is related to the UV-cutoff of the theory as

√
F ∼ ΛUV e

− 8π2

g2 . (3.1)

This scale is exponentially smaller than ΛUV .

Thus, this mechanism can potentially explain why SUSY-breaking is happening at a

low scale without putting unexplained small parameters by hand in the Lagrangian! The

hope is that it will shed light on the origin of the scale of the Standard Model (100 GeV).

Hence, we should really be studying IR-strong field theories that can lead to SUSY-

breaking. This is a vast subject that will not be covered here, see (ref) for reviews.

Instead, we will comment that, roughly speaking, these theories UV-free theories fall

into two classes

1. Theories in which powerful tools such as holomorphy and Seiberg-duality are useful,

and we can calculate the vacuum energy, masses of some particles etc.

2. Theories for which there are strong (but usually indirect) arguments that SUSY is

broken but we cannot say much about the properties of the vacuum.

The first type of theories is referred to as “calculable theories.” We will not discuss

theories of the second type (incalculable theories) here. Calculable theories arise when the

physics of the strong coupling scale Λ can be integrated out and we are left with a bunch

of light moduli fields, with some Kähler potential, global symmetries, and perhaps IR-free

gauge fields.

This is reminiscent of pion physics, which occurs at scales below the strong coupling

scale and leads to many precise predictions.
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Indeed, calculable dynamical theories lead at low energies to generalized O’Raifeartaigh

models (2.4), interesting sigma models (with and without gauged global symmetries), pos-

sible effective FI-terms etc. Therefore, studying such classical theories is useful and can

very often explain general properties of interesting calculable dynamical models.

The next section begins with a deeper study of the structure of supersymmetric theo-

ries. We will then use our results to shed light on the possible dynamics of various models.

4. The Supercurrent

Supersymmetric theories in 4d with N = 1 supersymmetry have a conserved energy

momentum tensor Tµν as well as a supercurrent Sµα

∂µSµα = 0 , ∂µTµν = 0 . (4.1)

In theories with symmetries all the operators furnish representations of the symme-

tries. In particular, in supersymmetric theories the operators should sit in supersymmetric

multiplets, or equivalently, superfields. We can get a hint of what is going to happen from

the following observations:

1. The SUSY algebra is

{Qα, Qα̇} ∼ σµ
αα̇Pµ . (4.2)

This can be written as {Qα,
∫
d3xS0α̇} ∼ σµ

αα̇

∫
d3xT0µ. From here we see that

{Qα, Sνα̇} ∼ σµ
αα̇Tµν + · · · . (4.3)

Here · · · stand for terms which are space derivatives when we set ν to zero. In addition

these terms must be conserved when we act with ∂ν . The conclusion is that the

supercurrent and energy momentum must sit in the same supermultiplet.

2. We expect that the energy momentum tensor is the highest spin component in the

multiplet. If this were not the case, there would be problems in coupling the theory

to supergravity (a topic we will get back to later).

From these we conclude that the superfield must be a vector superfield with the

following rough structure

Jµ = jµ + θα (Sµα + · · ·) + θα̇

(
S
α̇

µ + · · ·
)
+
(
θσνθ

)
(2Tνµ + · · ·) + · · · . (4.4)
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The vector operator in the bottom component is generally not conserved. There is

not a unique way to fix the full structure (i.e. to fix the · · ·).

The simplest solution is called the Ferrara-Zumino multiplet. It is given by the defining

equations

−2σµ
αα̇D

α̇J FZ
µ = DαX , DX = 0 . (4.5)

In addition, J FZ is real. The solution in components takes the form

J FZ
µ = jµ +

(
θα

(
Sµα +

1

3
(σµσ

ρSρ)α

)
+ c.c.

)
+
i

2
θ2∂µx− i

2
θ
2
∂µx

+
(
θσνθ

)(
2Tµν − 2

3
ηµνT − 1

4
ϵνµρσ∂

[ρjσ]
)
+O(θ3) .

(4.6)

The terms with three and four θs do not contain new operators, only derivatives of those

we have already displayed. The expression for X (in terms of the usual y coordinate) is

X = x+
√
2θψ + θ2F , ψ =

√
2

3
σµαα̇S

α̇

µ , F =
2

3
T + i∂νj

ν . (4.7)

This expression can be used to find the current algebra relation (4.3).2 The number of

bosonic operators in this multiplet is 12 = 2(x) + 4(jµ) + 6(Tµν) and the same for the

fermions.

Given that this is the minimal representation, there is an obvious question to ask

Does this multiplet exist for all the supersymmetric field theories we have

discussed so far?

We will answer this question by looking at examples. Let us start from a free field

theory of one chiral superfield with canonical Kähler potential and vanishing superpotential

L =

∫
d4θΦ†Φ . (4.8)

2 Roughly, it takes the form

{Qα, Sµα̇} = σν
αα̇

(
2Tµν + iηµν∂νj

ν − i∂νjµ − 1

4
ϵνµρσ∂

[ρjσ]
)

It can be checked that the algebra of charges is satisfied and the conservation equations are

consistent.
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Then the equation of motion can be nicely written in superspace as3

D
2
Φ† = 0 . (4.9)

Using this we can easily check that the multiplet

J FZ
αα̇ = 2DαΦDα̇Φ

† − 2

3
[Dα, Dα̇]Φ

†Φ , (4.10)

satisfies

D
α̇J FZ

αα̇ = 0 . (4.11)

(In the above we have adopted the convention −2σµ
αα̇lµ = lαα̇ for switching between the

bi-spinor and the vector notation.) The fact that X = 0 for this theory means that the

energy-momentum tensor is traceless and the whole theory is conformal, which is indeed

reasonable for the free field theory.

More generally, a sigma model with Kähler potential K and superpotential W admit

the multiplet

J FZ
αα̇ = 2gijDαΦ

iDα̇Φ
†j − 2

3
[Dα,Dα̇]K , (4.12)

and it satisfies the FZ equation with X = 4W − 1
3D

2
K.

We will get back to this formula later. Let us now find the FZ-multiplet for the FI-

model. We may consider, for simplicity, the pure U(1) FI-term (2.6). The equation of

motion gives DαWα = −ξ (and we also have the usual Bianchi identity DαWα = Dα̇W
α̇
).

Using this one can check that

J FZ
αα̇ =

−4

g2
WαW α̇ − 2

3
ξ[Dα, Dα̇]V (4.13)

satisfies the FZ equation with X ∼ ξD
2
V . The expression in the presence of matter fields

can be easily obtained as well.

Now we come to our original question, which concerned itself with the conditions for

the existence of the FZ-multiplet.

For an operator to be a legitimate “local operator” in the theory it must satisfy the

following three conditions

3 To see this, allow a general variation of δΦ and impose that the resulting action is stationary.

We get
∫
d4θΦ†δΦ+ c.c. = 0. We can then write this as ∼

∫
d2θD

2
Φ†δΦ+ c.c. which vanishes for

a generic δΦ if and only if D
2
Φ† = 0.
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1. It can be expressed locally (with finitely many derivatives) in terms of the fields of

the theory (once a microscopic description is provided).

2. It is gauge invariant.

3. It is a globally well-defined operator in the field space of the theory (we will see an

example of this in the following).

The question is whether the FZ-multiplet is a well-defined operator in the theory.

Clearly, for the FI-model it is not gauge invariant under the full supersymmetric group of

gauge transformations (1.13). Does this mean that there is no energy momentum tensor in

this theory? and a supercurrent? Under a gauge transformation the multiplet transforms

as

δJ FZ
αα̇ = i

2

3
ξ[Dα, Dα̇](Λ− Λ) ∼ ξ∂αα̇(Λ + Λ) , δX ∼ iξD

2
Λ . (4.14)

We see that the FZ-multiplet is not gauge invariant. Let us study this non-gauge

invariance in more detail. It can be checked that the transformation (4.14) acts on the

energy momentum tensor and on the supercurrent in the following way

δTµν ∼ ξ
(
∂µ∂ν − ηµν∂

2
)
ImΛ

∣∣ , δSµα ∼ ξ(σµν)
β
α ∂

ν(ψΛ)β . (4.15)

Here σµν is the usual antisymmetric combination σµν = 1
4 (σµσν − σνσµ).

This kind of transformations is very special. They do not affect the charges Qα, Pµ

(because both the transformation of energy momentum and the supercurrent reduce to

space derivatives when µ = 0) and the conservation equation is not affected either. Such

special transformations go under the name “improvement terms.”

We see that the situation is somewhat subtle; the operator J FZ does not strictly exist

in the theory, because it is not gauge invariant. However, the theory is not really sick since

the charges and the SUSY algebra do exist. This has many consequences which we will

get to soon.

Let us now consider the multiplet for sigma model (4.12). We see that it is not invari-

ant under Kähler transformations. Moreover, the structure is identical to (4.14),(4.15).

The energy momentum tensor and the supercurrent only change by improvement terms.

However, unlike gauge transformations, Kähler transformations are not sacred. It

does not matter much if the multiplet transforms under Kähler transformations. There is

one exception in which Kähler transformations become important. This is when the target

space manifold, M, needs to be covered with several patches and Kähler transformations
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are necessary when we switch between the patches. We have already seen such an example

before, the CP1 sigma model.

Let us understand the mathematical condition more precisely. The metric tensor gij
can also be thought of as a two-form

ω ∼ igijdΦ
i ∧ dΦj

. (4.16)

This two-form is closed due to (1.10). Therefore, on every single patch, we can find a

one-form A such that dA = ω. It is given by A ∼ i∂iKdΦ
i + c.c..

Note that the bottom component of the FZ-multiplet (4.12) has some fermionic terms

and a bosonic piece proportional to i ∂K∂Φi ∂µΦ
i + c.c.. This is the pull back to space time

of the one form A. The FZ multiplet is well-defined only if the bottom component is

well-defined, and this holds if the one-form A indeed exists. This means that ω vanishes

in H2(M).

We conclude that the vanishing of (4.16) in H2(M) is a necessary condition for the

existence of the FZ-multiplet. In other words, the Kähler form must be exact. An imme-

diate corollary follows from the fact that the volume form of compact Kähler manifolds

(such as the CP1) is given by ωdim(M)/2. Since the volume form cannot be exact, it is

clear that ω cannot be exact for compact manifolds. Hence, if the target space is compact

it has no well-defined FZ-multiplet.

If (4.16) is not exact, the FZ-multiplet it is not a function on the target space of

the theory. Different “observers” can measure the energy momentum tensor relative to

two different patches (which intersect) and report different values (however, the difference

integrates to zero when defining the momentum charge itself). So an agreement on the

value of the energy momentum tensor cannot be reached.

Let us now summarize what we have found in this section. The FZ-multiplet, which

is the minimal representation of supersymmetry containing the energy momentum tensor

and supercurrent, exists in most SUSY field theories. This includes all the asymptotically

free gauge theories. There are only two exceptions:

1. If some U(1) gauge group has a FI-term.

2. If the geometry of the target space is nontrivial.

In these two exceptional cases, the FZ multiplet is not well-defined (in the first case

due to gauge invariance and in the second case due to global issues), which means that it

is impossible to embed the energy momentum tensor and supercurrent into the minimal

supersymmetric multiplet.
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5. Consequences

The physical input we need is the following simple claim: If an operator is well-defined

and exists in the UV of some theory then it must persist to exist in the IR.

This allows us to derive several powerful non-renormalization theorems

1. To Be Continued
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