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Introduction

Black holes are classical solutions in general

theory of relativity.

We shall focus on time independent solutions.

A black hole in 3 space dimensions has a two

dimensional compact surface – known as the

event horizon – which allows objects to pass

from outside to inside but not vice versa.

The event horizon has topology of S2.
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Thus objects can fall into the black hole, but

nothing can ever come out of a black hole.

This notion of black holes generalizes to higher

dimensional theories of gravity.

A ‘black solution’ in d space dimensions has a

(d − 1) dimensional event horizon that allows

objects to pass from outside to inside but not

vice versa.
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In higher dimensions ‘black solutions’ can have

horizons of different topologies.

e.g. in 4 space dimensions we can have:

black holes of S3 topology event horizon

black rings of S2 × S1 topology event horizon.

For brevity of notation we shall refer to all of

them as black holes.

Classically all black holes behave like a perfect

black body at zero temperature.
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Once quantum effects are taken into account,

the black hole starts behaving as a black body

at finite temperature.

1) Black holes emit thermal radiation at tem-

perature:

T =
κ

2π

in h̄ = 1 units.

κ: acceleration due to gravity at the horizon

of the black hole
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2) Black holes carry entropy:

SBH =
1

4GN
A

A: Area of the event horizon

GN : Newton’s gravitational constant

– known as the Bekenstein-Hawking entropy
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In ordinary thermodynamics, entropy has a sta-

tistical interpretation.

Entropy = ln (number of quantum states which

represent the same thermodynamic object)

This is usually referred to as the statistical en-

tropy.

Can we give a similar interpretation to the

black hole entropy?
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One of the successes of string theory has been

an explanation of the Bekenstein-Hawking en-

tropy of a class of supersymmetric black holes

in terms of microscopic quantum states.

SBH = Sstat

Strominger, Vafa

SBH = A/4GN , A = Area of event horizon

Sstat = ln(degeneracy)

= ln (dimension of Hilbert space of supersym-

metric states carrying given set of charges)
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Originally the comparison between black hole

and statistical entropy was carried out in the

limit of large charges.

In this limit the curvature at the horizon is

small and hence we can ignore string theoretic

higher derivative corrections to the effective

action in computing the black hole entropy.

On the microscopic side we can use appropri-

ate asymptotic formula for the degeneracy of

states to calculate the statistical entropy.
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Given this success, it is natural to carry out our

study of this correspondence to finer details.

What are the effects of higher derivative cor-

rections in the action on the black hole en-

tropy?

Does the agreement between black hole en-

tropy and statistical entropy continue to hold

even after taking into account the effect of

these higher derivative corrections?
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In order to attack this problem we need to open

two fronts.

First of all we need to learn how to take into

account the effect of the higher derivative terms

on the computation of black hole entropy.

We also need to know how to calculate the

statistical entropy to greater accuracy.

– calculate corrections suppressed by inverse

powers of various charges.
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The first problem is solved via Wald’s formula.

– an explicit formula for black hole entropy

in terms of geometry near the horizon in any

higher derivative theory of gravity.

For extremal black holes this can be imple-

mented via the entropy function method which

gives an algebraic method for computing the

entropy for any given action. A.S.

In this talk I shall address the second problem.
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Our goal:

1. Find exact formula for the degeneracy of

quarter BPS states in a class of N = 4 super-

symmetric string theories.

We shall find that in this special class of the-

ories the degeneracies are related to the coef-

ficients of Fourier expansion of modular forms

of subgroups of Sp(2,ZZ).
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2. Compare the result with black hole entropy

including higher derivative corrections.

– would require studying the degeneracy for

large charges, ı.e. studying the

1) asymptotic behaviour of the Fourier expan-

sion coefficients of the modular forms,

2) systematic study of corrections to the asymp-

totic formula
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By degeneracy we shall always mean the index

that counts:

No. of bosonic supermultiplets – No. of fermionic

supermultiplets

The underlying assumption is that once we

take into account all interactions, the bosonic

and fermionic supermultiplets would combine

to become non-supersymmetric states, and only

the index worth of states will remain supersym-

metric.
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CHL models based on ZZN orbifolds

Choudhury, Hockney, Lykken

1. Begin with heterotic string theory on

T4 × S1 × Ŝ1

T4: A four torus

S1, Ŝ1: two circles with period 2π

2. Take the orbifold by a ZZN group gener-

ated by 2π/N shift along S1 + an order

N internal symmetry preserving N = 4 su-

persymmetry.
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Dual description

1. Begin with type IIB string theory on

K3 × S1 × S̃1

2. Take the orbifold by a ZZN group generated

by 2π/N shift along S1 + an appropriate or-

der N internal symmetry of type IIB string

theory on K3.

The resulting theory is N = 4 supersymmetric.
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Special choices of N :

N = 1,2,3,5,7

N = 1: heterotic string theory on T 6.

The number of U(1) gauge fields in these the-

ories is

r = 2k+ 8, k =
24

N + 1
− 2

For N = 1 we have k = 10 and r = 28.

N = 2 → k = 6, N = 3 → k = 4,

N = 5 → k = 2, N = 7 → k = 1
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Although we shall focus on these theories, the

analysis may be generalized for

1. other values of N ,

2. N = 4 supersymmetric asymmetric ZZN orb-

ifolds of type IIA on T4×S1× Ŝ1 – with all su-

persymmetries coming from the right-moving

sector
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States of this theory are characterized by (r di-

mensional) electric charge vector Q and mag-

netic charge vector P .

Define : L =

(
I6

−Ir−6

)

Heterotic T-duality transformation is generated

by a set of matrices Ω satisfying ΩLΩT = L

and preserving the charge lattice.

Q→ ΩQ, P → ΩP

T-duality invariants

P2 = PTLP, Q2 = QTLQ, P ·Q = PTLQ
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The heterotic S-duality group of this theory

can be found by studying the T-duality group

in type IIB description. Vafa, Witten

Result: It is Γ1(N) subgroup of SL(2,Z), con-

sisting of matrices of the form:
(
a b

c d

)
, ad− bc = 1

a, b, c, d ∈ ZZ, a, d = 1 mod N, c = 0 mod N

(
Q

P

)
→

(
a b

c d

)(
Q

P

)
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These theories contain 6(r − 6) + 2 moduli

scalar fields.

1. Set of r×r matrix valued scalar M satisfying

MT = M, MLMT = L

2. An axion-dilaton field

τ = a+ iS, S > 0

Far away from the black hole the vacuum is

parametrized by arbitrary values of these scalar

fields.

→ moduli space of the theory
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Our goal: To find the degeneracy d(Q,P ) of

dyons of charge (Q,P )

For the toroidal compactification a formula for

d(Q,P ) was proposed by Dijkgraaf, Verlinde, Ver-

linde.

Additional arguments for this formula were pro-

vided by Shih, Strominger, Yin and by Gaiotto.

Our goal will be to

• generalize the proposal to ZZN CHL string

theories

• prove the proposal.
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We shall describe the computation for a spe-

cific class of (Q,P ).

Description in IIB on K3 × S1 × S̃1/ZZN :

1) Q5 D5-brane wrapped on K3 × S1

2) Q1 D1-branes wrapped on S1

3) −k/N units of momentum along S1

4) J units of momentum along S̃1

5) One Kaluza-Klein monopole along S̃1

– BMPV black hole at the center of Taub-NUT
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After translated to the heterotic description,

this gives

P2 = 2Q5(Q1 −Q5), Q2 = 2k/N, Q · P = J

Once we have calculated the degeneracy for

these charges, we can extend the formula to

many other charge vectors using duality sym-

metries of the theory.
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In the weakly coupled type IIB description the

low energy dynamics of the system is described

by three weakly interacting pieces:

1) The closed string excitations around the

Kaluza-Klein monopole

2) The dynamics of the D1-D5 center of mass

coordinate in the Kaluza-Klein monopole back-

ground

3) The relative motion between the D1 and

the D5-brane
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Taking the coupling → 0 limit we can make

the three pieces non-interacting.

The generating function of the spectrum of

BPS states is given by the product of the gen-

erating function of each of these three different

systems.

Note: Individual pieces can be interacting.

e.g. D1-D5 system binds strongly to the Kaluza-

Klein monopole.
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We shall denote the generating function by:

−1/Φk(ρ, σ, v)

If we define g(m,n, p) through

−
1

Φk(ρ, σ, v)
=

∑

m,n,p

m≥−1,n≥−1/N

(−1)pe2πi(mρ+nσ+pv)g(m,n, p) ,

then

d(Q,P ) = g

(
1

2
P2,

1

2
Q2, Q · P

)
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Contribution to the generating function from

individual pieces

D1-D5 center of mass motion in KK monopole
background:

− e−2πiv (1 − e−2πiv)−2

×

∞∏

n=1

{
(1 − e2πinσ)4 (1 − e2πinσ+2πiv)−2 (1 − e2πinσ−2πiv)−2

}

Red: zero-mode contribution

→ comes from studying spectrum of bound

states of a superparticle to the Taub-NUT space

Pope; Gauntlett, Kim, Park, Yi

Black: non-zero mode oscillators
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Dynamics of KK monopole:

e−2πiσ/N
∞∏

n=1

{
(1 − e2πinσ/N)−

24

N+1(1 − e2πinσ)−
24

N+1

}

Relative motion between the D1 and D5 branes:

e−2πiρ
N−1∏

r=0

∏

l,b∈Z,k′∈Z+ r
N

k′≥0,l>0

{
1−exp(2πi(k′σ+lρ+bv))

}−
∑N−1

s=0
e−2πils/N c(r,s)(4lk′−b2)

Done by Dijkgraaf, Moore, Verlinde, Verlinde for N = 1.

cr,s(n): known coefficients, given in terms of

jacobi ϑ-functions and Dedekind η-functions.

Product of three pieces = −1/Φk(ρ, σ, v)
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Definition of c(r,s)(n):

A =

[
ϑ2(τ, z)2

ϑ2(τ,0)2
+
ϑ3(τ, z)2

ϑ3(τ,0)2
+
ϑ4(τ, z)2

ϑ4(τ,0)2

]

B = η(τ)−6ϑ1(τ, z)
2

EN(τ) =
12i

π(N − 1)
∂τ [ln η(τ) − ln η(Nτ)]

F (0,0)(τ, z) =
8

N
A ,

F (0,s)(τ, z) =
8

N(N + 1)
A−

2

N + 1
BEN(τ) ,

F (r,rk)(τ, z) =
8

N(N + 1)
A+

2

N(N + 1)
EN

(
τ + k

N

)
B ,

for 1 ≤ s ≤ (N − 1), 1 ≤ r ≤ (N − 1), 0 ≤ k ≤ (N − 1) ,

F (r,s)(τ, z) =
∑

b∈ZZ,n

c(r,s)(4n− b2) qn e2πizb
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Φk transforms as a modular form of weight k

of a subgroup of the modular group of genus

two Riemann surfaces.

The subgroup is Sp(2,ZZ) conjugate to the

group of Sp(2,ZZ) matrices
(
A B

C D

)

with A, B, C, D being 2 × 2 integer valued

matrices satisfying

ABT = BAT , CDT = DCT , ADT−BCT = 1

C = 0 mod N, detA = 1 mod N, detD = 1 mod N .
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−
1

Φk(ρ, σ, v)
=

∑

m,n,p

m≥−1,n≥−1/N

(−1)p e2πi(mρ+nσ+pv)g(m,n, p) .

There are two ways of carrying out this expan-

sion.

e−2πiv/(1−e−2πiv)2 can be expanded in powers

of e2πiv or e−2πiv.

→ for fixed m, n, the sum over p can either be

bounded from above or bounded from below.

Which one gives the correct g(m,n, p)?

Will be discussed later.
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Equivalent description

d(Q,P ) =
1

N
(−1)Q·P+1

∫

C
dρdσdv

1

Φk(ρ, σ, v)

exp
[
−iπ(ρP2 + σQ2 + 2vQ · P )

]
,

ρ, σ, v: complex parameters

C: a three real dimensional subspace:

0 ≤ Re ρ ≤ 1, 0 ≤ Reσ ≤ N, 0 ≤ Re v ≤ 1 .

Im ρ = M1, Imσ = M2, Im v = M3,

M1,M2 >> |M3| >> 0

Sign of M3 is related to whether we expand

1/Φk in positive or negative powers of e2πiv.
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Using explicit computation / T-duality sym-

metry, the analysis can be generalized to more

general charge vectors which lie on the T-

duality orbit of the original charge vector.

d(Q,P ), expressed in terms of P 2, Q2 and Q·P ,

remains the same.
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Walls of marginal stability

Moduli space of N = 4 supersymmetric string

theory has walls of marginal stability.

− codimension 1 supspaces on which a quarter

BPS dyon becomes marginally unstable against

decay into a pair of half BPS states.

Across these lines of marginal stability the dyon

spectrum can change.
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Our results are valid for weakly coupled type

IIB string theory.

− corresponds to some fixed region of the mod-

uli space.

How does the degeneracy change as we move

away from this region crossing the walls of

marginal stability?
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Results for walls of marginal stability

For a fixed charge vector (Q,P ) there are many

walls corresponding to the possiblity of decay

into various pairs.

m(Q,P ) = m(Q1, P1) +m(Q−Q1, P − P1)

Q1 ‖ P1, (Q−Q1) ‖ (P − P1)

− codimension 1 subspaces of asymptotic mod-

uli space.
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Let a + iS denote the heterotic axion-dilaton

modulus parametrizing SL(2, R)/U(1).

1. For fixed values of the other moduli, the

walls of marginal stability are circles or straight

lines in the a+ iS plane.

2. These curves never intersect in the interior

of upper half plane.

3. They can intersect on the real axis but only

at rational points.

→ different domains bounded by walls of marginal

stability have vertices at rational points or i∞.
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Example: N = 1 case, ı.e. heterotic on T 6

−1 0 1

The straight line passing through 0 represents

the decay (Q,P ) → (Q,0) + (0, P )

The straight line passing through 1 represents

the decay (Q,P ) → (Q− P,0) + (P, P )

The circle passing through 0 and 1 represents

the decay (Q,P ) → (Q,Q) + (0, P −Q) etc.
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Results for the degeneracy

1. The degeneracies in different domains are

given by the same integral formula, but with

different integration contours C.

2. As we deform one contour into another we

pick up residues from the poles of 1/Φk.

– reflects change in the degeneracy across the

walls of marginal stablity.

3. The change across a wall is proportional

to the product of the degeneracies of a pair

of half BPS dyons into which the original dyon

could decay on the particular wall.
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Example: N = 1 case, ı.e. heterotic on T 6

−1 0 1

= i M_1

= i M_2
v = i M_3

M_3>0

ρ
ρ= i M_1

σ = i M_2
v = i M_3

M_3<0

σ

This jump is due to a jump in the spectrum

in susy quantum mechanics describing D1-D5

centre of mass motion in KK monopole back-

ground Pope; Gauntlett, Kim, Park, Yi

In other domains we have different choices of

the three dimensional integration contour C.
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Comparison with black hole entropy for

large charges

d(Q,P) =
1

N
(−1)Q·P+1

∫

C

dρdσdv
1

Φk(ρ, σ, v)

exp
[
−iπ(ρP 2 + σQ2 + 2vQ · P)

]
,

a) Do the v integral by picking up residues from

the poles of 1/Φk.

Result:

d(Q,P ) =

∫
dρdσe−F(ρ,σ)

for some function F (ρ, σ).
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b) Do the ρ and σ integral using saddle point

approximation.

For this we can treat

d(Q,P ) =
∫
dρdσe−F(ρ,σ)

as we would treat a path integral and develop a

Feynman diagram approach for evaluating the

integral.

→ 1PI effective action −Γ(ρ, σ)

ln d(Q,P ) is the value of Γ(ρ, σ) at its extremum.

46



Γ(ρ, σ) can be calculated using Feynman dia-

gram expansion.

Loop expansion parameter: Inverse charge

Final statistical entropy to ‘one loop’ order,

obtained by extremizing Γ, agrees with the

black hole entropy after taking into account

the effect of the Gauss-Bonnet term in the ef-

fective action.

Both sides involve complicated expressions in-

volving Dedekind η function and the match is

highly non-trivial.
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Γ =
π

2

[(Q2

S
+
P 2

S
(S2 + a2) − 2

a

S
Q · P

)

+128π ψk(a, S)
]
+ O(Q−2, P−2)

ρ = i/(2NS), σ = iN(a2 + S2)/(2S)

For ZZN orbifolds with N = 1,2,3,5,7

ψk(a, S) = −
1

64π2

(
(k+ 2) lnS

+ln f (k)(a+ iS) + ln f (k)(−a+ iS)
)

k =
24

N + 1
− 2, f (k)(τ) = η(τ)k+2 η(Nτ)k+2
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How good is the asymptotic formula?

Q2 P 2 Q · P d(Q,P) Sstat S(0)
stat S(1)

stat

2 2 0 50064 10.82 6.28 10.62

4 4 0 32861184 17.31 12.57 16.90

6 6 0 16193130552 23.51 18.85 23.19

6 6 1 11232685725 23.14 18.59 22.88

6 6 2 4173501828 22.15 17.77 21.94

6 6 3 920577636 20.64 16.32 20.41

6 6 4 110910300 18.52 14.05 18.40
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What is the role of the walls of marginal sta-

bility in this comparison?

In the large charge limit the change in the de-

generacy across walls of marginal stability is

exponentially suppressed compared to the lead-

ing term.

Thus we would expect that the asymptotic ex-

pansion of the black hole entropy should not

change as we move across the walls of marginal

stability.

Consistent with the generalized attractor mech-

anism.
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However there is still an exponentially suppressed

change in d(Q,P ) across walls of marginal sta-

bility.

Can we explain this on the black hole side?

It can be explained by taking into account the

contribution from two centered small black holes.

Typically as we cross a wall of marginal sta-

bility, a particular 2-centered black hole (dis)-

appears, causing a change in entropy.

Denef; Denef, Moore

This change is precisely in accordance with the

prediction of the exact formula for d(Q,P ).
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Speculations for dyon spectrum in N = 2

supersymmetric string theories

d( ~Q, ~P ) =

∫

C
dM f( ~Q, ~P ,M)

f( ~Q, ~P ,M) = exp
(
f (1)
ij (M)QiQj + f (2)

ij (M)PiPj

+f (3)
ij (M)QiPj

)
× g(M)

M : A set of complex variables

f
(1)
ij , f

(2)
ij , f

(3)
ij : Simple functions of M

g(M): some complicated function of M that

encodes non-trivial information about the spec-

trum
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As we cross walls of marginal stability the in-

tegration contour C will change.

Jump in the spectrum: obtained from residues

at the poles picked up during contour defor-

mation.

Denef-Moore wall crossing formula gives

∆d( ~Q, ~P ) = (−1)Q1·P2−Q2·P1+1 |Q1 · P2 −Q2 · P1|

d( ~Q1, ~P1)d( ~Q2, ~P2)

across a wall corresponding to the decay (Q,P ) →

(Q1, P1) + (Q2, P2).
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Thus the wall crossing formula will relate the

residues at the poles in f(Q,P,M) to f(Q1, P1,M)

and f(Q2, P2,M).

→ a set of bootstrap relations.

Can we find a consistent solution?
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