Quaternions-Kähler Geometry

Advances in String Theory, Wall Crossing, and QK Geometry
IHP, 31 August 2010

http://calvino.polito.it/~salamon

incorporating material from the conference
Symmetric Spaces and Their Generalisations
Levico Spa, June 2010
CONTENTS

PART I
1. SYMMETRIC SPACES
2. HOLONOMY PROPERTIES
3. QUATERNIONIC MANIFOLDS
4. TWISTOR SPACES

PART II
5. ISOMETRY GROUPS
6. NILPOTENCY
7. INDEX THEORY
8. MORE TOPOLOGY
1.1 The Wolf spaces

are quaternionic analogues of Hermitian symmetric spaces. The classical compact ones of real dimension $4n$ are

$$\mathbb{HP}^n = \frac{Sp(n+1)}{Sp(n) \times Sp(1)}$$

$$\text{Gr}_2(\mathbb{C}^{n+2}) = \frac{SU(n+2)}{S(U(n) \times U(2))}$$

$$\text{Gr}_4(\mathbb{R}^{n+4}) = \frac{SO(n+4)}{SO(n) \times SO(4)}.$$

Exceptional ones have real dimensions $8, 28, 40, 64, 112$:

$$\frac{G_2}{SO(4)}, \frac{F_4}{Sp(3)Sp(1)}, \frac{E_6}{SU(6)Sp(1)}, \frac{E_7}{Spin(12)Sp(1)}, \frac{E_8}{E_7Sp(1)}.$$

Of all these, $\text{Gr}_2(\mathbb{C}^{n+2})$ (and $\text{Gr}_4(\mathbb{R}^6)$) are also Kähler. The others have $b_2 = 0$, and cannot even admit an almost complex structure (Gauduchon-Moroianu-Semmelmann).
1.2 Uniform construction

Given a compact simple Lie algebra \(g \), choose a Lie subalgebra \(\mathfrak{su}(2) = \mathfrak{sp}(1) \) arising from a highest root. Set

\[
H = K \mathfrak{Sp}(1) = \{ g \in G : \text{Ad}(g)(\mathfrak{su}(2)) = \mathfrak{su}(2) \}.
\]

Then

\[
M = \frac{G}{K \mathfrak{Sp}(1)} = \frac{G}{H}
\]

is quaternion-Kähler (QK); if \(G \) is centreless,

\[
H \subseteq \mathfrak{Sp}(n) \mathfrak{Sp}(1) \subset SO(4n),
\]

where \(\mathfrak{Sp}(n) = \mathfrak{Sp}(n)_\ell \) and \(\mathfrak{Sp}(1) \subset \mathfrak{Sp}(n)_r \) are subgroups of \(SO(4n) \) arising from left and right multiplication on \(\mathbb{H}^n = \mathbb{R}^{4n} \):

\[
\mathfrak{Sp}(n) \mathfrak{Sp}(1) = \mathfrak{Sp}(n) \times_{\mathbb{Z}_2} \mathfrak{Sp}(1) = \mathfrak{Sp}(n) \cdot \mathfrak{Sp}(1).
\]

Theorems: All compact QK homogeneous spaces arise in this way. There exist homogeneous non-symmetric QK spaces with \(s < 0 \) (Alekseevsky).

Later we’ll see what happens if we take other \(\mathfrak{su}(2) \)'s in \(g \ldots \)
1.3 The isotropy representations

of these spaces have special merit. For each Wolf space $G/KSp(1)$, we get a symplectic representation $K \rightarrow \text{End}(\mathbb{C}^{2n})$.

Example: Consider $\mathfrak{e}_6 = \mathfrak{su}(6) \oplus \mathfrak{sp}(1) \oplus \mathfrak{m}$, where

$$m_c = \Lambda^{3,0} \otimes \Sigma = \mathbb{C}^{40}$$

is the tangent space and $\Sigma = \mathbb{C}^2$. But E_6 also acts on

$$\mathbb{C}^{27} = (\Lambda^{1,0} \otimes \Sigma) \oplus \Lambda^{0,2}$$

$$= 6 + 6 + 15$$

$$= \langle a_i \rangle \oplus \langle b_j \rangle \oplus \langle c_{ij} \rangle$$

giving Schl"afli’s configuration of the 27 lines on a cubic surface:
2.1 Holonomy properties

A quaternion-Kähler manifold is a Riemannian manifold of dim $4n$, with $n \geq 2$, whose holonomy group H equals $Sp(n)Sp(1)$ or a subgroup thereof.

(i) Quaternion-Kähler \nrightarrow Kähler

(ii) If $H \subsetneq Sp(n)Sp(1)$ then M must be symmetric.

(iii) One normally excludes the hyper-Kähler (HK) case $H \subseteq Sp(n)$.

(iv) Bearing in mind that $Sp(1)Sp(1) = SO(4)$, one imposes that M be self-dual and Einstein when $n = 1$.

The Riemann curvature tensor R of a QK manifold belongs to

$$S^2(sp(n) \oplus sp(1)) \cong S^2sp(n) \oplus sp(n)sp(1) \oplus S^2sp(1),$$

but most summands on the right are Bianchi-inconsistent, so

$$R = R_{HK} \oplus sR_0,$$

where $\mathbb{H}P^n$ has $R = sR_0$ (cf. M^6 nearly-Kähler).

Corollary: M is necessarily Einstein. It is (locally) hyper-Kähler iff the scalar curvature s vanishes.
2.2 Parallel bundles and forms

Let M be a QK manifold. The reduction to $Sp(n)Sp(1)$ equips each tangent space $T_m M$ with a 2-sphere

$$Z_m = \{aI + bJ + cK : a^2 + b^2 + c^2 = 1\}$$

of almost complex structures, where $IJ = K = -JI$. They are compatible with a Riemannian metric g, and the subbundle Z of $\text{End}(TM)$ is invariant by the Levi-Civita connection ∇.

Equivalently, we have a rank 3 vector bundle with fibre

$$V_m = \{a \omega_1 + b \omega_2 + c \omega_3 : a, b, c \in \mathbb{R}\} \subset \Lambda^2 T^* m M,$$

and a parallel 4-form $\Omega = \sum_{r=1}^{3} \omega_r \wedge \omega_r$.

In 8 dimensions ($n = 2$), Ω is linearly equivalent to

$$1234 + 5678 + \frac{1}{3}(1256 + 1278 + 3456 + 3478 + 1357 + 1386 + 4257 + 4286 + 1458 + 1467 + 2358 + 2367).$$

Its stabilizer is $Sp(2)Sp(1)$ (but $Spin(7)$ if we change a few signs).

Lemma: If $n \geq 3$ the condition $d\Omega = 0$ implies $\nabla \Omega = 0$ and the holonomy reduction (Swann).
2.3 Representation theory

Suppose that M has an $Sp(n)Sp(1)$ structure. Its complexified (co)tangent space is

$$(T_m^*M)_c = E \otimes H, \quad E = \mathbb{C}^n, \quad H = \mathbb{C}^2$$

The space of 2-forms is

$$(\Lambda^2 T_m^*M)_c \cong S^2 E \oplus S^2 H \oplus (\Lambda^2_0 E \otimes S^2 H) \cong \mathfrak{sp}(n)_c \oplus \mathfrak{sp}(1)_c \oplus \mathfrak{m}_c.$$

Now suppose that $\dim M = 8$. Then \mathfrak{m} is the tangent space to

$$\frac{SO(8)}{Sp(2) \times Sp(1)} \xleftarrow{1:2} \frac{SO(8)}{SO(5) \times SO(3)} = \text{Gr}_3(\mathbb{R}^8),$$

and $\nabla \Omega$ belongs to the space

$$T^*M \otimes \mathfrak{m} \cong \begin{array}{|c|c|}
E & S^3 H \\
S^3 H & K S^3 H \\
E H & K H \\
\end{array}$$

Example: The 8-manifold $SU(3)$ has an $Sp(2)Sp(1)$ structure with $\nabla \Omega \in E S^3 H$ (Macia).
3.1 Quaternionic manifolds

Recall that any QK manifold M admits a subbundle $Z \subset \text{End}(TM)$, hence a G-structure with $G = GL(n, \mathbb{H})Sp(1)$ and a torsion-free G-connection. This makes it a quaternionic manifold.

If we reduce to $SL(n, \mathbb{H})Sp(1)$, the torsion-free connection is unique.

Theorem: Given a quaternionic manifold with $n \geq 2$, the total space of Z has a natural complex structure (Bérard Bergery, S).

This generalizes the twistor space construction of Atiyah-Hitchin-Singer for self-dual conformal structures.

Example: If the structure reduces to $GL(n, \mathbb{H})$ or $SL(n, \mathbb{H})$ then M is hyper-complex: it admits global complex structures I, J, K and there is a holomorphic map

$$Z \cong M \times \mathbb{CP}^1 \longrightarrow \mathbb{CP}^1.$$

If $M = \mathbb{H}^n$ then $Z \cong 2n\mathcal{O}(1)$.

Corollary: Over any quaternionic manifold, we can choose a local basis I, J, K with I integrable and $IJ = K = -JI$. This makes QK manifolds very close to being complex and (if $s > 0$) Kähler.
3.2 Associated bundles

arise from the actions of $Sp(1)$ on model fibres:

\[
\begin{array}{c}
\mathcal{S}^{4n+3} & \hookrightarrow & \mathcal{U}^{4n+4} \\
\downarrow & & \downarrow \\
\mathcal{Z}^{4n+2} & \hookrightarrow & \mathcal{V}^{4n+3} \\
\downarrow & & \downarrow \\
\mathcal{M}^{4n}
\end{array}
\]

M is a quaternionic manifold.

Z is the complex twistor space with fibre $\mathbb{C}P^1 \cong S^2$.

V is the span of I, J, K, fibre $\mathbb{R}^3 = sp(1)$, is $\Lambda^2 T^* M$ if $n = 1$.

\mathcal{U} is the hyper-complex Swann bundle with fibre $\mathbb{H}^*/\mathbb{Z}_2$;
\mathcal{U} has both HK and QK metrics if M is QK with $s > 0$.

\mathcal{S} has fibre $SO(3)$, and is 3-Sasakian if M is QK with $s > 0$;
\mathcal{S} can be smooth even if M is an orbifold.

(Roček, Boyer-Galicki)
3.3 Low-cost flying

over a quaternionic manifold \(M^{4n} \) is achieved exploiting a notion of instanton, namely a bundle \((F, \nabla)\) with ‘self-dual’ curvature.

Theorem: If \(F \) has fibre \(\mathbb{H}^k \), the total space \(M_F \) of \(F \otimes H \) is also a quaternionic manifold of real dimension \(4(n + k) \).

Proof. If \(\pi: Z \to M \), the instanton condition tells us that \(\pi^* F \) has a holomorphic structure over the twistor space \(Z \). Then the twistor space of \(M_F \) is the total space of \(\pi^* F \otimes \mathcal{O}(1) \) over \(Z \); since this is complex, \(M \) is quaternionic.

Special cases:
(i) if \(M \) is QK then \(TM \cong E \otimes H \) is quaternionic, but not (?) QK.
(ii) if \(F = \mathbb{H} \) then \(M_F \) admits an \(\mathbb{H}^* \)-invariant hypercomplex structure away from its zero section and double-covers \(\mathcal{U} \).

Example: Given \(M \) QK, construct \(\mathcal{U} \) which is HK. Then

\[
\mathcal{U} \cong \mathcal{U} \times \mathbb{H}^* / \mathbb{H}^*
\]

also has a QK metric!
4.1 Twistor spaces

The prototype is given by the fibration

\[
\begin{align*}
\mathbb{C}P^3 \supset \mathbb{C}P^3 \setminus \mathbb{C}P^1 & \to \mathbb{C}P^1 \\
\downarrow & \\
S^4 = \mathbb{H}P^1 & \supset \mathbb{R}^4.
\end{align*}
\]

Conformal geometry of S^4 is encoded into holomorphic data in $\mathbb{C}P^3$ invariant by the real involution j acting as the antipodal map on each fibre $S^2 = \mathbb{C}P^1$. A (local) holomorphic section is the same as an orthogonal complex structure on (an open set of) \mathbb{R}^4.

Applications (S-Viaclovsky):

(i) Any OCS over $\mathbb{R}^4 \setminus \{p_1, \ldots, p_n\}$ is conformally constant.

(ii) This is false for $\mathbb{R}^6 = \mathbb{R}^4 \times \mathbb{R}^2$ that inherits an OCS from $\mathbb{C}P^3$!

(iii) A non-real quadric in $\mathbb{C}P^3$ has at most 2 twistor lines. Any non-singular cubic surface in $\mathbb{C}P^3$ has at most $4/27$ twistor lines.
4.2 Fano contact manifolds

When M^{4n} is a Wolf space, its twistor space

$$Z = \frac{G}{KU(1)} \xrightarrow{\pi} \frac{G}{KSp(1)} = M.$$

is an adjoint orbit in \mathfrak{g}, polarized by a holomorphic line bundle L. Each fibre $\pi^{-1}(m)$ is a rational curve \mathbb{CP}^1 with normal bundle $2n\mathcal{O}(1)$ (whereas $L|_{\mathbb{CP}^1} \cong \mathcal{O}(2)$).

Wolf, in 1964, pointed out that Z has a complex contact structure $\theta \in H^0(Z, \Omega^1(L))$. There is a holomorphic short exact sequence

$$0 \to D \to TZ \xrightarrow{\theta} L \to 0$$

of vector bundles, in which D is horizontal, and $\kappa \cong L^{n+1}$.

Example: $\mathbb{CP}^{2n+1}(\to \mathbb{HP}^n)$ has $L=\mathcal{O}(2)$, but in general Z is Fano of index $n+1$.
4.3 The Penrose correspondence

between M and Z is more general, even in the QK context:

<table>
<thead>
<tr>
<th>M QK, $s \neq 0$</th>
<th>Z complex contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>point</td>
<td>rational curve</td>
</tr>
<tr>
<td>complex structure</td>
<td>holomorphic section</td>
</tr>
<tr>
<td>Killing field X</td>
<td>$s \in H^0(Z, \mathcal{O}(L))$</td>
</tr>
<tr>
<td>Dirac operator</td>
<td>$\overline{\partial}$ on $\Lambda^{0,*} \otimes \mathcal{O}(-n)$</td>
</tr>
<tr>
<td>$s > 0$</td>
<td>Z Kähler-Einstein</td>
</tr>
<tr>
<td>$s > 0$, compact</td>
<td>Z contact Fano</td>
</tr>
<tr>
<td>$b_2(M) + 1$</td>
<td>$= b_2(Z)$</td>
</tr>
</tbody>
</table>

The interpretation of solutions to linear field equations as elements of Čech cohomology is the essence of the Penrose programme.

Questions:

(i) Is every contact Fano manifold Z^{2n+1} homogeneous?

(ii) Is every positive QK manifold (meaning complete with $s > 0$) symmetric? There are at most finitely many examples (LeBrun-S). These are open if $n \geq 3$, and there are many global issues if $s < 0$.
5.1 Isometries

Theorem The moduli space of complete QK metrics with \(s < 0 \) on \(\mathbb{R}^{4n} \) is infinite-dimensional (LeBrun).

Non-compact duals of Wolf spaces furnish examples with \(s < 0 \). Each admits a simply transitive solvable group of isometries, but Alekseevsky found three other series of such homogeneous QK spaces (amplified by de Wit-Van Proeyen and Cortés). Links with special Kähler geometry exploited \(U(n, 2)/(U(n) \times U(2)) \) as fibre (Ferrara-Sabharwal).

Whereas symmetric spaces admit compact quotients by a discrete group, the other homogeneous spaces definitely do not.

Question: Does any homogeneous QK space with \(s < 0 \) admit a simply transitive group of isometries?

Locally, QK metrics (with \(s > 0 \), \(s = 0 \) or \(s < 0 \)) can easily be constructed from the quotient construction.
5.2 Reduction

Suppose that M^{4n} is a QK manifold with an isometric $U(1)$ action generating a Killing vector field X such that $\mathcal{L}_X \Omega \equiv 0$. Then the $\mathfrak{sp}(1)$-component

$$\eta = \pi(dX^b) \in \Gamma(M,V)$$

is a 2-form that satisfies

$$d\eta = sX \lrcorner \Omega = s \sum_{i=1}^3 I_i X^b \wedge \omega_i.$$

Moreover,

$$sX \lrcorner \eta = df, \quad f = \frac{1}{2} \|\eta\|^2.$$

The 2-form η determines a section $s_\eta \in H^0(Z, O(L))$ whose zero set consists of OCS’s $\pm J_\eta$ on $\widehat{M} = M \setminus \{f = 0\}$.

Theorem: If $U(1)$ acts freely then $f^{-1}(0)/U(1)$ admits a natural QK structure (Galicki-Lawson).

This extends naturally to an isometric action by a Lie group G, and is a version of the Hyper-Kähler quotient construction.
5.3 G2Q structures

develop ideas from Atiyah-Witten’s paper on M-theory.

Example: The diagonal action of $S^1 = U(1) \subset Sp(3)$ on \mathbb{H}^3 gives rise to an $SU(3)$-equivariant picture

$$f^{-1}(0) = S^5 \subset \mathbb{H}P^2 \setminus \mathbb{C}P^2$$

\[\downarrow\quad \downarrow\]

$\mathbb{C}P^2 \leftarrow \Lambda^2 T^* \mathbb{C}P^2 = X$.

The 7-dim space X admits a complete metric with holonomy G_2.

Theorem: Let M^8 be QK with an S^1 action. Then

(i) $\hat{M} = M \setminus \{f = 0\}$ has an explicit Kähler metric (Haydys).

(ii) $f^{-1}(c)/S^1$ has half-flat structures (Gambioli-Nagatomo-S).

(iii) \hat{M}/S^1 has a G_2-structure with $d\varphi \equiv 0$.

The 3-form φ is a modification of $X \ominus \Omega$. Holonomy G_2 is achieved when the gradients of f and $\|X\|$ are parallel.
6.1 Nilpotency

Now suppose that M^{4n} is a QK manifold with an isometry group G of dimension ℓ. Consider the morphism

$$\Phi : Z \to \mathbb{P}(g^*_c) = \mathbb{P}(H^0(Z, O(L)))$$

$$z \mapsto [s_1(z), \ldots, s_\ell(z)],$$

a moment map for the G_c-invariant contact structure θ.

Suppose $\varphi \in S^k g^*$ is an invariant polynomial. Then either

(a) the image of φ under $S^k g^*_c \to H^0(Z, O(L^k))^*$ is non-zero, or

(b) $\Phi(Z)$ lies in the zero set of φ.

In (a), the image of φ vanishes on k local sections of $Z \to M$ each of which determines a G-invariant OCS of type $aI + bJ + cK$. If these are absent, (b) asserts that $\Phi(Z)$ lies in the projectivized nilpotent variety in $\mathbb{P}(g^*_c)$.
6.2 The Nahm calibration

Nilpotent orbits in g_c^* are obtained by choosing $su(2) \subset g$:

$$\mathcal{U} = (Ad \, G_c)(e) \subset g_c, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C}).$$

Such orbits admit a HK metric (Kronheimer, Biquard), but only if \mathcal{U} is minimal is \mathcal{U}/\mathbb{C}^* compact. In this case, it is the twistor space Z that fibres over $M = G/KSp(1)$.

The fundamental 3-form $\langle [X,Y], Z \rangle$ on a compact Lie algebra g defines a function $f : \mathbb{G}r_3(g) \to \mathbb{R}$ for which

(i) $V \in \mathbb{G}r_3(g)$ is critical iff V is a subalgebra;
(ii) f achieves its max on the Wolf space of minimal $su(2)$’s;
(iii) one can easily compute $\text{Hess}(f)$ at any critical V.

Example: For $G = SU(3)$ there are two inequivalent TDS’s:

- $su(2) \subset su(3), \quad G(V) = \frac{\hat{SU}(3)}{U(2)} = \mathbb{C}P^2$
- $so(3) \subset su(3), \quad G(V) = \frac{\hat{SU}(3)}{SO(3)} = C^5$.

In the second case, $su(3)_c \cong \Sigma^2 \oplus \Sigma^4$, where $\Sigma^q = S^q(\mathbb{C}^2)$, and

$$T_{V/\mathbb{G}r_3(g)} \cong V \otimes V^\perp \cong \Sigma^2 \otimes \Sigma^4 \cong \Sigma^2 \oplus \Sigma^4 \oplus \Sigma^6$$
6.3 SU(3) continued

\[T_\nabla \text{Gr}_3(\mathfrak{g}) \cong V \otimes V^\perp \cong \Sigma^2 \otimes \Sigma^4 \cong \Sigma^2 \oplus \Sigma^4 \oplus \Sigma^6 \]

The associated *unstable manifold* \(M^8 \) is the union of \(C^5 \) and the upward flow lines of the vector field \(\text{grad } f \). It is diffeomorphic to a rank 3 vector bundle over \(C^5 \) with fibre \(\Sigma^2 \), and

\[T_\nu M^8 \cong \Sigma^2 \oplus \Sigma^4 \cong \Sigma^3 \otimes \Sigma^1 = \Sigma^3 \otimes H \]

is quaternionic. In fact, \(M^8 \) is locally symmetric:

\[
\frac{G_2}{SO(4)} \setminus \mathbb{C}P^2 \xrightarrow{3:1} M^8.
\]

Theorem For \(G \) compact simple, \(f \) is a Morse-Bott function on \(\text{Gr}_3(\mathfrak{g}) \). The unstable manifold determined by a TDS \(V \) is QK and its Swann bundle is the associated complex nilpotent orbit \(\mathcal{U} \).
7.1 Index theory

Let M^{4n} be a Wolf space or a positive QK manifold with isometry group G. Its virtual $Spin(4n)$ representation is

$$\Delta_+ - \Delta_- = \Lambda_0^n (E - H) = \bigoplus_{p+q=n} (-1)^p R^{p,q},$$

where $R^{p,q} = \Lambda_0^p E \otimes S^q H$.

The coupled Dirac operator

$$\Gamma(M, \Delta_+ \otimes R^{p,q}) \longrightarrow \Gamma(M, \Delta_- \otimes R^{p,q})$$

has index $i^{p,q} = \int_M \text{ch}(R^{p,q}) \hat{A}(M)$. The following is an expression of Witten rigidity and a G-equivariant statement:

Theorem:

$$(-1)^p i^{p,q} = \begin{cases}
0 & \text{if } p+q < n, \\
2p-2 + b_{2p} & \text{if } p+q = n, \\
\dim G & \text{if } p=0, q=n+2.
\end{cases}$$
7.2 Application to dimension 8

Index theory (and the γ filtration) gives a linear constraint on the Betti numbers and estimates on the isometry group, in terms of characteristic classes including $u \in H^4(M, \mathbb{Z})$ that represents Ω.

Example: If $\dim M = 8$ then $b_2 + 1 = b_4$, suggesting $b_2 = 0$ or 1. Moreover

$$\dim G = 5 + \int_M u^2.$$

If $b_4 = 1$ then

$$\dim G = \begin{cases}
5 + 16 & = \dim Sp(3), \\
5 + 9 & = \dim G_2, \\
5 + 4 & = \dim Sp(1)^3, \\
5 + 1 & = \dim SO(4),
\end{cases}$$

corresponding to

$$\text{HP}^2 = \frac{Sp(3)}{Sp(2) \times Sp(1)}, \quad \frac{G_2}{SO(4)}, \quad \frac{\text{HP}^2}{(\mathbb{Z}_2)^2}?$$

Only the first two spaces are non-singular.
7.3 Towards a classification

Let \(M^{4n} \) be a compact positive QK manifold.

The odd Betti numbers \(b_{2p+1} \) of \(M^{4n} \) all vanish.

Theorem: If \(b_2(M) > 0 \) then \(M \) is isometric to the Wolf space \(\mathbb{G}_{\mathbb{R}2}(\mathbb{C}^{n+2}) \) (LeBrun-S, Wisniewski).

A proof uses Mori theory on the twistor space. If \(b_2(Z) > 1 \) there exists a second family of rational curves on \(Z \) transverse to the fibres over \(M \), and a Fano contraction \(Z \to \mathbb{C}P^{n+1} \) with its fibres tangent to the contact distribution \(D \). This forces \(Z = \mathbb{P}(T^*\mathbb{C}P^{n+1}) \).

If we ignore \(\mathbb{H}P^n \) then \(M \) is spin iff \(n \) is even, giving a dichotomy according to the parity of \(n \).
7.4 The \hat{A} genus

Let M^{4n} be a compact positive QK manifold. If n is even, M is spin and $\hat{A}(M) = 0$ because $s > 0$.

Theorem A positive QK manifold M^8 is isometric to a Wolf space (Poon-S).

An attempt to push this to dimension 12 using elliptic genera needs the assumption $\hat{A}(M) = 0$ (Herrera-Herrera).

Theorem: If $b_4 = 1$ and $3 \leq n \leq 6$ then $M \cong \mathbb{H}P^n$ (Amann).

All exceptional Wolf spaces have $b_4 = 1$, including $\frac{F_4}{Sp(3)Sp(1)}$.

Theorem If $n = 5$ and $\hat{A}(M) = 0$ then $\dim G \geq 15$ and M is a Wolf space if (for example) $\int_M u^5 > 384$ (Amann).

Question: Does a positive QK manifold M^{4n} necessarily admit an isometry group of positive dimension? Yes, at least if $n \leq 4$. If n is odd, must $\hat{A}(M)$ vanish?
8.1 More topology

Consider the Poincaré polynomial

\[P(t) = 1 + b_1 t + b_2 t^2 + b_3 t^3 + \cdots \]

of an oriented compact manifold with \(\chi = P(-1) \neq 0 \). Then

\[\log P(t - 1) = \log \chi - dt + \phi t^2 + \cdots \]

where \(d = \dim M \), and \(16\phi = 4P''(-1)/\chi - d^2 \). By construction, this coefficient is additive for products:

\[\phi(M \times N) = \phi(M) + \phi(N). \]

Theorems:

(i) If \(M^{4n} \) is compact HK then \(\chi = 0 \) or \(\phi = -\frac{5}{6}n \).

(ii) If \(M^d = G/H \) is an irreducible compact symmetric space of type ADE or any Hermitian symmetric space, \(\phi = \frac{1}{12}(h(g) - 2)d \), where \(h(g) \) is the Coxeter number (Fino-S).

(iii) If \(M^{4n} \) is an ADE Wolf space then \(\phi = \frac{1}{3}n^2 \).
8.2 The case of E_8

The signature of an ADE Wolf space equals its rank: $b_{2n}^+ = b_{2n} = r$, and χ equals the number $\frac{1}{2}(\dim G - r)$ of positive roots.

$E_8/E_7Sp(1)$ has 8 primitive cohomology classes $\sigma_k \in H^{4k}(M, \mathbb{R})$;

$$H^{56}(M, \mathbb{R}) = \langle \sigma_k \cup u^{14-k} : k = 0, 3, 5, 6, 8, 9, 11, 14 \rangle,$$

exhibiting a remarkable symmetry about degree $n = 28$:

![Diagram showing cohomology classes](image)

Question: Is the intersection form $H^{56}(M, \mathbb{Z}) \times H^{56}(M, \mathbb{Z}) \to \mathbb{Z}$ diagonalizable or the E_8 lattice? (Hirzebruch-Sladowy)

The quaternionic volume (Herrera, Weingart) is:

$$\int_M u^{28} = 2^3.3^2.5^2.7.31.37.41.43.47.53 = \frac{5! \cdot 9! \cdot 57!}{19! \cdot 23! \cdot 29!} = 63468758442600$$