Fivebrane Instantons and Hypermultiplets

Daniel Persson

ETH Zürich
"Advances in string theory, wall crossing and quaternion-Kähler geometry" IHP, Paris, Aug-Sept 2010

Based on [Alexandrov, D.P., Pioline] to appear

Also related: [Pioline, D.P., 0902.3274]
[Bao, Kleinschmidt, Nilsson, D.P., Pioline, 0909.4299 \& I 005.4848]

So far: perturbative and D-instanton corrections to the hypermultiplet metric
This talk: take initial steps towards completing the picture

$$
\longrightarrow \text { include NS5-branes }
$$

[Becker, Becker, Strominger]

- worldvolume theory is chiral
partition function is a
- section of a line bundle
over the space of 3 -forms
- "requires a choice of \quad "quadratic refinement"
- worldvolume theory is non-chiral
- related to D5 by S-duality
- DT-invariants and topological strings
- non-trivial contact structure on twistor space $\mathcal{Z}_{\mathcal{M}} \rightarrow \mathcal{M}$

$$
\text { How to implement NS5-corrections to } \mathcal{M} \text { ? }
$$

Outline

O The HM moduli space in IIA/CY3

O The type IIA fivebrane partition function revisited

O Uplifting to twistor space

O NS5-brane instantons from S-duality

O Conclusions and Discussion

Type IIA point of view on \mathcal{M} (recap from Boris's talk)

In the weak-coupling limit, the moduli space is foliated by circle fibrations over the intermediate Jacobian

Type IIA point of view on \mathcal{M} (recap from Boris's talk)

In the weak-coupling limit, the moduli space is foliated by circle fibrations over the intermediate Jacobian

$$
\begin{aligned}
& \mathcal{M} \sim \mathbb{R}_{\phi}^{+} \times\left(\begin{array}{ccc}
S_{\sigma}^{1} & \rightarrow & \mathcal{C}(\phi) \\
& & \ddots \\
& & \mathcal{J}_{c}(\mathcal{X})
\end{array}\right) \quad \operatorname{dim} \mathcal{M}=4\left(h_{2,1}+1\right) \\
& \begin{array}{ccc}
H^{3}(\mathcal{X}, \mathbb{R}) / H^{3}(\mathcal{X}, \mathbb{Z}) & \rightarrow & \mathcal{J}_{c}(\mathcal{X}) \\
& & \downarrow \\
& & \mathcal{M}_{c}(\mathcal{X}),
\end{array} \\
& \zeta^{\Lambda}=\int_{\mathcal{A}^{\Lambda}} C_{(3)} \quad \tilde{\zeta}_{\Lambda}=\int_{\mathcal{B}_{\Lambda}} C_{(3)} \\
& \left(\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right) \in \frac{H^{3}(\mathcal{X}, \mathbb{R})}{H^{3}(\mathcal{X}, \mathbb{Z})}=\mathcal{T} \\
& \operatorname{dim} \mathcal{T}=2 h_{2,1}+2
\end{aligned}
$$

Type IIA point of view on \mathcal{M} (recap from Boris's talk)

In the weak-coupling limit, the moduli space is foliated by circle fibrations over the intermediate Jacobian

$$
\begin{aligned}
& \mathcal{M} \sim \mathbb{R}_{\phi}^{+} \times\left(\begin{array}{ccc}
S_{\sigma}^{1} & \rightarrow & \mathcal{C}(\phi) \\
& & \vdots \\
& & \mathcal{J}_{c}(\mathcal{X})
\end{array}\right) \quad \operatorname{dim} \mathcal{M}=4\left(h_{2,1}+1\right) \\
& H^{3}(\mathcal{X}, \mathbb{R}) / H^{3}(\mathcal{X}, \mathbb{Z}) \quad \rightarrow \quad \mathcal{J}_{c}(\mathcal{X}) \\
& \mathcal{M}_{c}(\mathcal{X}), \quad \operatorname{dim} \mathcal{M}_{c}=2 h_{2,1} \\
& \zeta^{\Lambda}=\int_{\mathcal{A}^{\Lambda}} C_{(3)} \quad \tilde{\zeta}_{\Lambda}=\int_{\mathcal{B}_{\Lambda}} C_{(3)} \\
& \left(\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right) \in \frac{H^{3}(\mathcal{X}, \mathbb{R})}{H^{3}(\mathcal{X}, \mathbb{Z})}=\mathcal{T}
\end{aligned}
$$

Type IIA point of view on \mathcal{M} (recap from Boris's talk)

In the weak-coupling limit, the moduli space is foliated by circle fibrations over the intermediate Jacobian

$$
\mathcal{M} \sim \mathbb{R}_{\phi}^{+} \times\left(\begin{array}{ccc}
S_{\sigma}^{1} & \rightarrow & \mathcal{C}(\phi) \\
& & \downarrow \\
& & \mathcal{J}_{c}(\mathcal{X})
\end{array}\right)
$$

First Chern class: $\quad c_{1}(\mathcal{C})=d\left(\frac{D \sigma}{2}\right)=\omega_{\mathcal{T}}+\frac{\chi}{24} \omega_{\mathcal{M}_{c}}$

Type IIA point of view on \mathcal{M} (recap from Boris's talk)

In the weak-coupling limit, the moduli space is foliated by circle fibrations over the intermediate Jacobian

$$
\mathcal{M} \sim \mathbb{R}_{\phi}^{+} \times\left(\begin{array}{ccc}
S_{\sigma}^{1} & \rightarrow & \mathcal{C}(\phi) \\
& & \downarrow \\
& & \mathcal{J}_{c}(\mathcal{X})
\end{array}\right)
$$

Translations along \mathcal{T} form a Heisenberg group

> broken by D2-instantons $$
n^{\Lambda}, m_{\Lambda} \in \mathbb{Z}
$$

σ

broken by NS5-instantons
$\kappa \in \mathbb{Z}$

Type IIA point of view on \mathcal{M} (recap from Boris's talk)

In the weak-coupling limit, the moduli space is foliated by circle fibrations over the intermediate Jacobian

$$
\mathcal{M} \sim \mathbb{R}_{\phi}^{+} \times\left(\begin{array}{ccc}
S_{\sigma}^{1} & \rightarrow & \mathcal{C}(\phi) \\
& & \downarrow \\
& & \mathcal{J}_{c}(\mathcal{X})
\end{array}\right)
$$

Translations along \mathcal{T} form a Heisenberg group

$$
\begin{aligned}
\zeta^{\Lambda} & \longmapsto \zeta^{\Lambda}+n^{\Lambda} \\
\tilde{\zeta}_{\Lambda} & \longmapsto \tilde{\zeta}_{\Lambda}+m_{\Lambda} \\
\sigma & \longmapsto \sigma+2 \kappa-m_{\Lambda} \zeta^{\Lambda}+n^{\Lambda} \tilde{\zeta}_{\Lambda}+c_{\Theta}(m, n)
\end{aligned}
$$

Qualitative form of NS5-instanton corrections

$$
\begin{aligned}
&\left.d s_{\mathcal{M}}^{2}\right|_{\mathrm{NS} 5} \sim e^{-4 \pi|k| e^{\phi}-i \pi k \sigma} \mathcal{Z}^{(k)}(\zeta, \tilde{\zeta}) \\
& \text { chiral NS5-partition function }
\end{aligned}
$$

Qualitative form of NS5-instanton corrections

$$
\left.d s_{\mathcal{M}}^{2}\right|_{\mathrm{NS} 5} \sim e^{-4 \pi|k| e^{\phi}-i \pi k \sigma} \mathcal{Z}^{(k)}(\zeta, \tilde{\zeta})
$$

- NS5-instanton action: $\quad S_{\text {NS5 }}=4 \pi|k|\left(g_{s}^{-2}+\cdots\right)+i \pi(\sigma+\cdots)$
- $e^{-i \pi k \sigma}$ is valued in the circle bundle \mathcal{C}^{-k}
$\longrightarrow \mathcal{C}^{-k}$ non-trivially fibered over both \mathcal{T} and \mathcal{M}_{c} !
- What about $\mathcal{Z}^{(k)}(\zeta, \tilde{\zeta})$?

Is the coupling well-defined?

The fivebrane partition function revisited

Key problem: worldvolume \mathbf{W} supports an (imaginary) self-dual 3-form $H=d \mathcal{B}$

$$
\star_{W} H=i H
$$

[Callan, Curtis, Harvey, Strominger]

- The "flux" H acts as an electric source for the 3-form C
- Non-chiral partition function is a sum over harmonic fluxes $H \in H^{3}(\mathcal{X}, \mathbb{Z})$
- Construct the chiral partition function via factorization

Construct \mathcal{Z} by holomorphic factorization of the non-chiral partition function:

$$
\mathcal{Z}^{\text {non-chiral }}(C)=\sum_{H \subset H^{3}(\mathcal{X} 7)} r(H) e^{-S(H, C)}
$$

Gaussian action, weak-coupling approximation $g_{s} H \ll 1$

Construct \mathcal{Z} by holomorphic factorization of the non-chiral partition function:

$$
\mathcal{Z}^{\text {non-chiral }}(C)=\sum_{H \in H^{3}(\mathcal{X}, \mathbb{Z})} r(H) e^{-S(H, C)}
$$

"fluctuation determinant" $r(H)=|\mathcal{F}|^{2}\left[\sigma_{\Theta}(H)\right]^{k}$

Construct \mathcal{Z} by holomorphic factorization of the non-chiral partition function:

$$
\mathcal{Z}^{\text {non-chiral }}(C)=\sum_{H \in H^{3}(\mathcal{X}, \mathbb{Z})} r(H) e^{-S(H, C)}
$$

"fluctuation determinant" $r(H)=|\mathcal{F}|^{2}\left[\sigma_{\Theta}(H)\right]^{k}$
"quadratic refinement" of the intersection form on $H^{3}(\mathcal{X}, \mathbb{Z})$

$$
\sigma_{\Theta}: H^{3}(\mathcal{X}, \mathbb{Z}) \longrightarrow U(1)
$$

cocycle: $\quad \sigma_{\Theta}\left(H+H^{\prime}\right)=(-1)^{\left\langle H, H^{\prime}\right\rangle} \sigma_{\Theta}(H) \sigma_{\Theta}\left(H^{\prime}\right)$

Construct \mathcal{Z} by holomorphic factorization of the non-chiral partition function:

$$
\mathcal{Z}^{\text {non-chiral }}(C)=\sum_{H \in H^{3}(\mathcal{X}, \mathbb{Z})} r(H) e^{-S(H, C)}
$$

"fluctuation determinant" $r(H)=|\mathcal{F}|^{2}\left[\sigma_{\Theta}(H)\right]^{k}$
general solution can be written as:

$$
\begin{gathered}
\sigma_{\Theta}(H)=e^{-i \pi k m_{\Lambda} n^{\Lambda}+2 \pi i\left(m_{\Lambda} \theta^{\Lambda}-n^{\Lambda} \phi_{\Lambda}\right)} \\
n^{\Lambda}=\int_{\mathcal{A}^{\Lambda}} H
\end{gathered} m_{\Lambda}=\int_{\mathcal{B}_{\Lambda}} H \quad \Theta=\left(\theta^{\Lambda}, \phi_{\Lambda}\right)
$$

"characteristics"
may vary continuously over \mathcal{M}_{C}

Construct \mathcal{Z} by holomorphic factorization of the non-chiral partition function:

$$
\mathcal{Z}^{\text {non-chiral }}(C)=\sum_{H \in H^{3}(\mathcal{X}, \mathbb{Z})} r(H) e^{-S(H, C)}
$$

Choose a Lagrangian decomposition: $H^{3}(\mathcal{X}, \mathbb{Z})=\Gamma_{e} \oplus \Gamma_{m}$
After Poisson resummation on $m_{\Lambda} \in \Gamma_{m}$

Partition function of the chiral NS5-brane

Construct \mathcal{Z} by holomorphic factorization of the non-chiral partition function:

$$
\mathcal{Z}^{\text {non-chiral }}(C)=\sum_{H \in H^{3}(\mathcal{X}, \mathbb{Z})} r(H) e^{-S(H, C)}
$$

Choose a Lagrangian decomposition: $H^{3}(\mathcal{X}, \mathbb{Z})=\Gamma_{e} \oplus \Gamma_{m}$
After Poisson resummation on $m_{\Lambda} \in \Gamma_{m}$

$$
\mathcal{Z}^{\text {non-chiral }}(C) \sim \sum_{\mu}\left|\mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, \zeta, \tilde{\zeta})\right|^{2}
$$

Period matrix in the "Weil complex structure" on \mathcal{T} (determined by the Hodge star $\star \mathcal{X}$)

The chiral NS5-brane partition function $\quad\left(\mathbf{E}[x]=e^{2 \pi i x}\right)$

$$
\mathcal{Z}_{\Theta, \mu}^{(k)}=\mathcal{F} e^{\pi i k\left(\theta^{\Lambda} \phi_{\Lambda}-\zeta^{\Lambda} \tilde{\zeta}_{\Lambda}\right)} \sum_{n \in \Gamma_{m}+\mu+\theta} \mathbf{E}\left[\frac{k}{2}\left(\zeta^{\Lambda}-n^{\Lambda}\right) \overline{\mathcal{N}}_{\Lambda \Sigma}\left(\zeta^{\Sigma}-n^{\Sigma}\right)+k\left(\tilde{\zeta}_{\Lambda}-\phi_{\Lambda}\right) n^{\Lambda}\right]
$$

[Belov, Moore] (see also [Dijkgraaf,Verlinde,Vonk])

- periodicity: [Belov,Moore]

$$
\mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, \zeta+n, \tilde{\zeta}+m)=\left(\sigma_{\Theta}(H)\right)^{k} e^{\pi i\left(n^{\Lambda} \tilde{\zeta}_{\Lambda}-m_{\Lambda} \zeta^{\Lambda}\right)} \mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, \zeta, \tilde{\zeta})
$$

\longrightarrow is a holomorphic section of a line bundle $\mathcal{L}_{\Theta}^{k} \longrightarrow \mathcal{T} \quad$ [Witten]

$$
\mathcal{D}_{\bar{\omega}} \mathcal{Z}_{\Theta, \mu}^{(k)}=0 \quad \quad \bar{\omega}_{\Lambda}=\tilde{\zeta}_{\Lambda}-\mathcal{N}_{\Lambda \Sigma} \zeta^{\Sigma}
$$

The chiral NS5-brane partition function $\quad\left(\mathbf{E}[x]=e^{2 \pi i x}\right)$

$$
\mathcal{Z}_{\Theta, \mu}^{(k)}=\mathcal{F} e^{\pi i k\left(\theta^{\Lambda} \phi_{\Lambda}-\zeta^{\Lambda} \tilde{\zeta}_{\Lambda}\right)} \sum_{n \in \Gamma_{m}+\mu+\theta} \mathbf{E}\left[\frac{k}{2}\left(\zeta^{\Lambda}-n^{\Lambda}\right) \overline{\mathcal{N}}_{\Lambda \Sigma}\left(\zeta^{\Sigma}-n^{\Sigma}\right)+k\left(\tilde{\zeta}_{\Lambda}-\phi_{\Lambda}\right) n^{\Lambda}\right]
$$

[Belov, Moore] (see also [Dijkgraaf,Verlinde,Vonk])

- periodicity: [Belov,Moore]
$\mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, \zeta+n, \tilde{\zeta}+m)=\left(\sigma_{\Theta}(H)\right)^{k} e^{\pi i\left(n^{\Lambda} \tilde{\zeta}_{\Lambda}-m_{\Lambda} \zeta^{\Lambda}\right)} \mathcal{Z}_{\Theta, \mu}^{(k)}(\mathcal{N}, \zeta, \tilde{\zeta})$
$\longrightarrow \mu$ labels the $|k|^{b_{3}(\mathcal{X})}$ holomorphic sections of \mathcal{L}_{Θ}^{k}
\longrightarrow for a single NS5-brane $k=1$ there is a unique holomorphic section of \mathcal{L}_{Θ}

Back to the original problem of the coupling:

$$
\left.d s_{\mathcal{M}}^{2}\right|_{\mathrm{NS} 5} \sim e^{-4 \pi|k| e^{\phi}-i \pi k \sigma} \mathcal{Z}_{\Theta, \mu}^{(k)}(\zeta, \tilde{\zeta})
$$

- $e^{i \pi \sigma}$ is valued in $\mathcal{C}(\phi)$ with $\left.c_{1}(\mathcal{C})\right|_{\mathcal{T}}=\omega_{\mathcal{T}}$
- $\mathcal{Z}_{\Theta}^{(1)}$ is the unique holomorphic section of $\mathcal{L}_{\Theta} \longrightarrow \mathcal{T}$

$$
c_{1}\left(\mathcal{L}_{\Theta}\right)=\omega_{\mathcal{T}}
$$

\rightarrow NS5-brane instantons are well-defined under variations along \mathcal{T}

Back to the original problem of the coupling:

$$
\left.d s_{\mathcal{M}}^{2}\right|_{\mathrm{NS} 5} \sim e^{-4 \pi|k| e^{\phi}-i \pi k \sigma} \mathcal{Z}_{\Theta, \mu}^{(k)}(\zeta, \tilde{\zeta})
$$

- What about $\mathcal{L} \longrightarrow \mathcal{M}_{c}$?
\longrightarrow Part of the answer lies in the normalization factor \mathcal{F}
[Belov, Moore]
- \mathcal{F} is analogous to $1 / \eta$ in the partition function of a $2 d$ chiral boson
[Alvarez-Gaume, Moore, Nelson, Vafa, Bost]
Important to take proper account of supersymmetry

The correct coupling should be formulated as a deformation of the complex contact structure on twistor space

Twistor Space of \mathcal{M} - a brief recap

$$
\mathbb{C} P^{1} \longrightarrow \mathcal{Z}_{\mathcal{M}} \longrightarrow \mathcal{M}
$$

$\mathcal{Z}_{\mathcal{M}}$ is a complex contact manifold with a Kähler-Einstein metric

$$
\text { contact one-form: } \quad \mathcal{X}^{[i]}=d \alpha^{[i]}+\xi_{[i]}^{\Lambda} d \tilde{\xi}_{\Lambda}^{[i]}-\tilde{\xi}_{\Lambda}^{[i]} d \xi_{[i]}^{\Lambda}
$$

[Salamon][LeBrun][Swann][de Wit, Rocek, Vandoren][Alexandrov, Saueressig, Pioline, Vandoren]

Twistor Space of \mathcal{M} - a brief recap

$$
\mathbb{C} P^{1} \longrightarrow \mathcal{Z}_{\mathcal{M}} \longrightarrow \mathcal{M}
$$

$\mathcal{Z}_{\mathcal{M}}$ is a complex contact manifold with a Kähler-Einstein metric

$$
\begin{gathered}
\text { contact one-form: } \quad \mathcal{X}^{[i]}=d \alpha^{[i]}+\xi_{[i]}^{\Lambda} d \tilde{\xi}_{\Lambda}^{[i]}-\tilde{\xi}_{\Lambda}^{[i]} d \xi_{[i]}^{\Lambda} \\
\text { complex Darboux coordinates on } \mathcal{U}_{i} \subset \mathcal{Z}_{\mathcal{M}}
\end{gathered}
$$

Twistor Space of \mathcal{M} - a brief recap

$$
\mathbb{C} P^{1} \longrightarrow \mathcal{Z}_{\mathcal{M}} \longrightarrow \mathcal{M}
$$

$\mathcal{Z}_{\mathcal{M}}$ is a complex contact manifold with a Kähler-Einstein metric

$$
\text { contact one-form: } \quad \mathcal{X}^{[i]}=d \alpha^{[i]}+\xi_{[i]}^{\Lambda} d \tilde{\xi}_{\Lambda}^{[i]}-\tilde{\xi}_{\Lambda}^{[i]} d \xi_{[i]}^{\Lambda}
$$

Isometries of \mathcal{M} lift to a holomorphic action on $\mathcal{Z}_{\mathcal{M}}$:
[Galicki][Salamon][Alexandrov, Saueressig, Pioline,Vandoren]

$$
\begin{aligned}
\xi^{\Lambda} & \longmapsto \xi^{\Lambda}+n^{\Lambda} \\
\tilde{\xi}_{\Lambda} & \longmapsto \tilde{\xi}_{\Lambda}+m_{\Lambda} \\
\alpha & \longmapsto \alpha+2 \kappa-m_{\Lambda} \xi^{\Lambda}+n^{\Lambda} \tilde{\xi}_{\Lambda}+c_{\Theta}(m, n)
\end{aligned}
$$

Twistor Space of \mathcal{M} - a brief recap

$$
\mathbb{C} P^{1} \longrightarrow \mathcal{Z}_{\mathcal{M}} \longrightarrow \mathcal{M}
$$

$\mathcal{Z}_{\mathcal{M}}$ is a complex contact manifold with a Kähler-Einstein metric

$$
\text { contact one-form: } \quad \mathcal{X}^{[i]}=d \alpha^{[i]}+\xi_{[i]}^{\Lambda} d \tilde{\xi}_{\Lambda}^{[i]}-\tilde{\xi}_{\Lambda}^{[i]} d \xi_{[i]}^{\Lambda}
$$

$\longrightarrow\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right)$ parametrize the complexified Jacobian torus:

$$
\mathcal{T}^{\mathbb{C}}=\left[\frac{H^{3}(\mathcal{X}, \mathbb{R})}{H^{3}(\mathcal{X}, \mathbb{Z})}\right]^{\mathbb{C}}
$$

$\longrightarrow \quad e^{i \pi \alpha}$ transforms like a section of the "complexified" theta line bundle

$$
\begin{array}{cc}
\mathbb{C}^{\times} \rightarrow & \mathcal{L}_{\Theta}^{\mathbb{C}} \\
& \downarrow \\
& \mathcal{T}^{\mathbb{C}}
\end{array}
$$

Deformations of \mathcal{M} can be uplifted to deformations of the complex contact structure on $\mathcal{Z}_{\mathcal{M}}$
\longrightarrow Infinitesimal deformations classified by $H^{1}\left(\mathcal{Z}_{\mathcal{M}}, \mathcal{O}(2)\right)$

- Practically, we study transition functions $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ on overlapping patches
- Specify the Darboux coordinates in terms of $(x, t) \in \mathcal{M} \times \mathbb{C} P^{1}$

$$
\xi_{[i]}^{\Lambda}(x, t), \tilde{\xi}_{\Lambda}^{[i]}(x, t), \alpha^{[i]}(x, t)
$$

- Perturbative Darboux coordinates: [Alexandrov, Saueressig, Pioline, Vandoren]

$$
\begin{array}{ll}
\xi^{\Lambda}=\zeta^{\Lambda}+\frac{\tau_{2}}{2}\left(t^{-1} z^{\Lambda}-t \bar{z}^{\Lambda}\right) & \text { D(-I)-D } \tag{-I}\\
\tilde{\xi}_{\Lambda}=\tilde{\zeta}_{\Lambda}+\frac{\tau_{2}}{2}\left(t^{-1} F_{\Lambda}(z)-t \bar{F}_{\Lambda}(\bar{z})\right) & \text { D3-D5 } \\
\alpha=\sigma+\frac{\tau_{2}}{2}\left(t^{-1} W(z)-t \bar{W}(\bar{z})\right)+\frac{i \chi(\mathcal{X})}{24 \pi} \log t & \text { NS5 }
\end{array}
$$

Deformations of \mathcal{M} can be uplifted to deformations of the complex contact structure on $\mathcal{Z}_{\mathcal{M}}$
\longrightarrow Infinitesimal deformations classified by $H^{1}\left(\mathcal{Z}_{\mathcal{M}}, \mathcal{O}(2)\right)$

- Practically, we study transition functions $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ on overlapping patches
- Specify the Darboux coordinates in terms of $(x, t) \in \mathcal{M} \times \mathbb{C} P^{1}$

$$
\xi_{[i]}^{\Lambda}(x, t), \tilde{\xi}_{\Lambda}^{[i]}(x, t), \alpha^{[i]}(x, t)
$$

- In the absence of NS5-branes, isometries of α are unbroken
$\longrightarrow H^{[i j]}(\xi, \tilde{\xi}, \alpha)=H^{[i j]}(\xi, \tilde{\xi})$ reduce to symplectomorphisms
- When NS5-branes are present, $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ are genuine contact transformations
- When NS5-branes are present, $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ are genuine contact transformations

Translations along \mathcal{T} form a Heisenberg group with algebra: $\quad\left[T_{\xi^{\Lambda}}, T_{\tilde{\xi}_{\Sigma}}\right]=k \delta_{\Sigma}^{\Lambda}$
\longrightarrow Cannot diagonalize $T_{\xi^{\wedge}}$ and $T_{\tilde{\xi}_{\Sigma}}$ simultaneously
NS5 charge
Must choose a polarization!

- $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ has a "non-abelian Fourier expansion":

$$
\begin{gathered}
H^{[i j]}(\xi, \tilde{\xi}, \alpha)=\sum_{k \neq 0} \sum_{\mu \in\left(\Gamma_{m} /|k|\right) / \Gamma_{m}} \sum_{n \in \Gamma_{m}+\mu} H_{\mu, k}\left(\xi^{\Lambda}-n^{\Lambda}\right) \mathbf{E}\left[k n^{\Lambda} \tilde{\xi}_{\Lambda}-\frac{k}{2}\left(\tilde{\alpha}+\xi^{\Lambda} \tilde{\xi}_{\Lambda}\right)\right] \\
\text { "Wave function" }
\end{gathered}
$$

- When NS5-branes are present, $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ are genuine contact transformations

Translations along \mathcal{T} form a Heisenberg group with algebra: $\quad\left[T_{\xi^{\Lambda}}, T_{\tilde{\xi}_{\Sigma}}\right]=k \delta_{\Sigma}^{\Lambda}$
\longrightarrow Cannot diagonalize $T_{\xi^{\wedge}}$ and $T_{\tilde{\xi}_{\Sigma}}$ simultaneously
NS5 charge
Must choose a polarization!

- $H^{[i j]}(\xi, \tilde{\xi}, \alpha)$ has a "non-abelian Fourier expansion":

$$
\begin{gathered}
H^{[i j]}(\xi, \tilde{\xi}, \alpha)=\sum_{k \neq 0} \sum_{\mu \in\left(\Gamma_{m} /|k|\right) / \Gamma_{m}} \sum_{n \in \Gamma_{m}+\mu} H_{\mu, k}\left(\xi^{\Lambda}-n^{\Lambda}\right) \mathbf{E}\left[k n^{\Lambda} \tilde{\xi}_{\Lambda}-\frac{k}{2}\left(\tilde{\alpha}+\xi^{\Lambda} \tilde{\xi}_{\Lambda}\right)\right] \\
\text { "Wave function" }
\end{gathered}
$$

Suggestive relation with the topological string...

NS5-instantons in twistor space

Aim: Find the twistor space analogue of the fivebrane partition function General arguments require:

$$
H_{k}(\xi, \tilde{\xi}, \alpha) \sim e^{-i \pi k \alpha} \mathcal{Z}^{(k)}(\xi, \tilde{\xi})
$$

NS5-instantons in twistor space

Aim: Find the twistor space analogue of the fivebrane partition function
"Exploratory strategy": Start from the D-instanton series in IIB and employ S-duality
$\longrightarrow(\mathrm{D} 5, \mathrm{NS} 5)$ form a doublet under $S L(2, \mathbb{Z})$

- Similar philosophy as was previously done for (FI,DI) + D(-I)
[Robles-Llana, Rocek, Saueressig, Theis, Vandoren]

NS5-instantons in twistor space

Aim: Find the twistor space analogue of the fivebrane partition function
"Exploratory strategy": Start from the D-instanton series in IIB and employ S-duality

$$
\longrightarrow(\mathrm{D} 5, \mathrm{NS} 5) \text { form a doublet under } S L(2, \mathbb{Z})
$$

- Deformations arise due to to $\mathrm{D}(-\mathrm{I})$-DI-D3-D5 wrapping

$$
\gamma=p^{0}+p^{a} \omega_{a}-q_{a} \omega^{a}+q_{0} \omega_{\hat{\mathcal{X}}} \in H_{\mathrm{even}}(\hat{\mathcal{X}}, \mathbb{Z})
$$

- "BPS ray" $\ell_{\gamma}=\left\{t: Z_{\gamma}\left(z^{a}\right) / t \in i \mathbb{R}^{-}\right\}$
- Across each ray, $\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right)$ are related by a symplectomorphism
[Kontsevich, Soibelman][Gaiotto, Moore, Neitzke] [Alexandrov, Saueressig, Pioline, Vandoren]

$$
H_{\gamma}=\frac{i}{2(2 \pi)^{2}} \Omega(\gamma) \operatorname{Li}_{2}\left[\sigma_{\Theta}(\gamma) e^{-2 \pi i\left(q_{\Lambda} \xi^{\Lambda}-p^{\wedge} \tilde{\xi}_{\Lambda}\right)}\right]
$$

NS5-instantons in twistor space

Aim: Find the twistor space analogue of the fivebrane partition function
"Exploratory strategy": Start from the D-instanton series in IIB and employ S-duality
$\longrightarrow(\mathrm{D} 5, \mathrm{NS} 5)$ form a doublet under $S L(2, \mathbb{Z})$

- Deformations arise due to to $\mathrm{D}(-\mathrm{I})$-DI-D3-D5 wrapping

$$
\gamma=p^{0}+p^{a} \omega_{a}-q_{a} \omega^{a}+q_{0} \omega_{\hat{\mathcal{X}}} \in H_{\mathrm{even}}(\hat{\mathcal{X}}, \mathbb{Z})
$$

- "BPS ray" $\ell_{\gamma}=\left\{t: Z_{\gamma}\left(z^{a}\right) / t \in i \mathbb{R}^{-}\right\}$
- Across each ray, $\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right)$ are related by a symplectomorphism
[Kontsevich, Soibelman][Gaiotto, Moore, Neitzke] [Alexandrov, Saueressig, Pioline, Vandoren]

$$
H_{\gamma}=\frac{i}{2(2 \pi)^{2}} \tilde{\Omega}(\gamma) \sigma_{\Theta}(\gamma) e^{-2 \pi i\left(q_{\Lambda} \xi^{\Lambda}-p^{\Lambda} \tilde{\xi}_{\Lambda}\right)}
$$

S-duality

- Data: $\left(H_{\gamma}, \ell_{\gamma}\right) \longrightarrow \delta \cdot\left(H_{\gamma}, \ell_{\gamma}\right)=\left(H_{k, p, \hat{\gamma}}, \ell_{k, p, \hat{\gamma}}\right)$

$$
\delta=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

- $\operatorname{gcd}(c, d)=1$
- $(c, d)=(-k, p) / p^{0}$
k NS5-charge

$$
p^{0}=\operatorname{gcd}(k, p)
$$

p D5-charge

- Reduced charge vector: $\hat{\gamma}=\left(p^{a}, \hat{q}_{a}, \hat{q}_{0}\right)$

S-duality

- Data: $\left(H_{\gamma}, \ell_{\gamma}\right) \longrightarrow \delta \cdot\left(H_{\gamma}, \ell_{\gamma}\right)=\left(H_{k, p, \hat{\gamma}}, \ell_{k, p, \hat{\gamma}}\right)$
- Key property: $\quad\binom{\tilde{\xi}_{0}}{\alpha} \mapsto\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)\binom{\tilde{\xi}_{0}}{\alpha}+\cdots$

$$
\begin{aligned}
\tilde{\xi}_{0} & =\tilde{\zeta}_{0}+\frac{\tau_{2}}{2}\left(t^{-1} F_{\Lambda}(z)-t \bar{F}_{\Lambda}(\bar{z})\right) \\
\alpha & =\sigma+\frac{\tau_{2}}{2}\left(t^{-1} W(z)-t \bar{W}(\bar{z})\right)+\frac{i \chi(\mathcal{X})}{24 \pi} \log t
\end{aligned}
$$

- Main assumption: S-duality leaves the complex contact structure invariant
- May be questionable, but works for $\mathrm{D}(-\mathrm{I})$-(FI,DI)
[Alexandrov, Saueressig, Pioline, Vandoren][Alexandrov, Saueressig]

S-duality

- Data: $\left(H_{\gamma}, \ell_{\gamma}\right) \longrightarrow \delta \cdot\left(H_{\gamma}, \ell_{\gamma}\right)=\left(H_{k, p, \hat{\gamma}}, \ell_{k, p, \hat{\gamma}}\right)$
- After some trickery: $\left(\mathbf{E}[x]=e^{2 \pi i x}\right)$

$$
\begin{aligned}
H_{k, p, \hat{\gamma}}= & \frac{i \sigma_{\Theta}(\gamma)}{8 \pi^{2}} \tilde{\Omega}(\gamma) \mathbf{E}\left[-\frac{k}{2} S_{\alpha}+\frac{p^{0}\left(k \hat{q}_{a}\left(\xi^{a}-n^{a}\right)+p^{0} \hat{q}_{0}\right)}{k^{2}\left(\xi^{0}-n^{0}\right)}\right] \\
S_{\alpha} \equiv \alpha+\left(\xi^{\Lambda}-2 n^{\Lambda}\right) \tilde{\xi}_{\Lambda}+2 \frac{N\left(\xi^{a}-n^{a}\right)}{\xi^{0}-n^{0}} & \left(n^{0}, n^{a}\right)=\left(p, p^{a}\right) / k \\
& N\left(\xi^{a}\right) \equiv \frac{1}{6} \kappa_{a b c} \xi^{a} \xi^{b} \xi^{c}
\end{aligned}
$$

S-duality

- Data: $\left(H_{\gamma}, \ell_{\gamma}\right) \longrightarrow \delta \cdot\left(H_{\gamma}, \ell_{\gamma}\right)=\left(H_{k, p, \hat{\gamma}}, \ell_{k, p, \hat{\gamma}}\right)$
- After some trickery: $\left(\mathbf{E}[x]=e^{2 \pi i x}\right)$

$$
\begin{aligned}
H_{k, p, \hat{\gamma}} & =\frac{i \sigma_{\Theta}(\gamma)}{8 \pi^{2}} \tilde{\Omega}(\gamma) \mathbf{E}\left[-\frac{k}{2} S_{\alpha}+\frac{p^{0}\left(k \hat{q}_{a}\left(\xi^{a}-n^{a}\right)+p^{0} \hat{q}_{0}\right)}{k^{2}\left(\xi^{0}-n^{0}\right)}\right] \\
S_{\alpha} & \equiv \alpha+\left(\xi^{\Lambda}-2 n^{\Lambda}\right) \tilde{\xi}_{\Lambda}+2 \frac{N\left(\xi^{a}-n^{a}\right)}{\xi^{0}-n^{0}}
\end{aligned}
$$

- Up to subtle phases, the set of data $\left(\ell_{k, p, \hat{\gamma}}, H_{k, p, \hat{\gamma}}\right)$ is invariant under Heisenberg translations of $\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha\right)$
- Assuming that $\tilde{\Omega}(\gamma)$ is invariant under "generalized spectral flow"

Find the analogue of the fivebrane partition function
\longrightarrow Consider the formal sum:

$$
H_{\mathrm{NS} 5}^{(k)}\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha\right)=\sum_{p, p^{a}, q_{\Lambda}} H_{k, p, \hat{\gamma}}\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha\right)
$$

Find the analogue of the fivebrane partition function
\longrightarrow Use Heisenberg invariance to rewrite:

$$
H_{\mathrm{NS} 5}^{(k)}(\xi, \tilde{\xi}, \alpha)=\sum_{\mu \in\left(\Gamma_{m} /|k|\right) / \Gamma_{m}} \sum_{n \in \Gamma_{m}+\mu} H_{\mathrm{NS} 5}^{(k, \mu)}\left(\xi^{\Lambda}-n^{\Lambda}\right) \mathbf{E}\left[k n^{\Lambda}\left(\tilde{\xi}_{\Lambda}-\phi_{\Lambda}\right)-\frac{k}{2}\left(\tilde{\alpha}+\xi^{\Lambda} \tilde{\xi}_{\Lambda}\right)\right]
$$

- This is a non-Gaussian theta series
\longrightarrow Twistor space analogue of the chiral fivebrane partition function!

Does this make sense?

Restrict to $k=1 \longrightarrow$ Considerable simplification:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right)=e^{-2 \pi i \frac{N\left(\xi^{a}\right)}{\xi^{0}}+\pi A_{\Lambda \Sigma} \xi^{\Lambda} \xi^{\Sigma}} \sum_{\hat{q}_{a}, \hat{q}_{0}} \tilde{\Omega}(\gamma)(-1)^{\hat{q}_{0}} e^{2 \pi i \hat{q}_{a} \xi^{a}\left(\xi^{0}\right)^{-1}+2 \pi i \hat{q}_{0}\left(\xi^{0}\right)^{-1}}
$$

- Now compare with (rank I) D6-D2-D0 DT-partition function:

$$
\mathcal{Z}_{\mathrm{DT}}=\sum_{Q_{a}, J}(-1)^{2 J} N_{D T}\left(Q_{a}, 2 J\right) e^{-2 \lambda J+2 \pi i Q_{a} z^{a}}
$$

Restrict to $k=1 \longrightarrow$ Considerable simplification:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right)=e^{-2 \pi i \frac{N\left(\xi^{a}\right)}{\xi^{0}}+\pi A_{\Lambda \Sigma} \xi^{\Lambda} \xi^{\Sigma}} \sum_{\hat{q}_{a}, \hat{q}_{0}} \tilde{\Omega}(\gamma)(-1)^{\hat{q}_{0}} e^{2 \pi i \hat{q}_{a} \xi^{a}\left(\xi^{0}\right)^{-1}+2 \pi i \hat{q}_{0}\left(\xi^{0}\right)^{-1}}
$$

- Now compare with (rank I) D6-D2-D0 DT-partition function:

$$
\mathcal{Z}_{\mathrm{DT}}=\sum_{Q_{a}, J}(-1)^{2 J} N_{D T}\left(Q_{a}, 2 J\right) e^{-2 \lambda J+2 \pi i Q_{a} z^{a}}
$$

- Under formal change of variables: $\left(\lambda, z^{a}\right)=\left(2 \pi /\left(i \xi^{0}\right), \xi^{a} / \xi^{0}\right)$

$$
\left(Q_{a}, 2 J\right)=\left(\hat{q}_{a}+c_{2, a} / 24, \hat{q}_{0}\right)
$$

$$
\longrightarrow H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right)=e^{-2 \pi i \frac{N\left(\xi^{a}\right)}{\xi^{0}}+\pi A_{\Lambda \Sigma} \xi^{\Lambda} \xi^{\Sigma}} \mathcal{Z}_{\mathrm{DT}}\left(\xi^{\Lambda}\right)
$$

Restrict to $k=1 \longrightarrow$ Considerable simplification:

$$
\begin{aligned}
& H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right)= e^{-2 \pi i \frac{N\left(\xi^{a}\right)}{\xi^{0}}+\pi A_{\Lambda \Sigma} \xi^{\Lambda} \xi^{\Sigma}} \sum_{\hat{q}_{a}, \hat{q}_{0}} \tilde{\Omega}(\gamma)(-1)^{\hat{q}_{0}} e^{2 \pi i \hat{q}_{a} \xi^{a}\left(\xi^{0}\right)^{-1}+2 \pi i \hat{q}_{0}\left(\xi^{0}\right)^{-1}} \\
& \mathcal{Z}_{\mathrm{DT}}=\sum_{Q_{a}, J}(-1)^{2 J} N_{D T}\left(Q_{a}, 2 J\right) e^{-2 \lambda J+2 \pi i Q_{a} z^{a}} \\
& \text { from the quadratic refinement! }
\end{aligned}
$$

- Under formal change of variables: $\left(\lambda, z^{a}\right)=\left(2 \pi /\left(i \xi^{0}\right), \xi^{a} / \xi^{0}\right)$

$$
\left(Q_{a}, 2 J\right)=\left(\hat{q}_{a}+c_{2, a} / 24, \hat{q}_{0}\right)
$$

$$
\longrightarrow H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right)=e^{-2 \pi i \frac{N\left(\xi^{a}\right)}{\xi^{0}}+\pi A_{\Lambda \Sigma} \xi^{\Lambda} \xi^{\Sigma}} \mathcal{Z}_{\mathrm{DT}}\left(\xi^{\Lambda}\right)
$$

Actually, a more accurate statement is:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right) \sim \Psi_{\mathbb{R}}^{\mathrm{top}}(\xi)
$$

Topological string amplitude in the "real" (background-independent) polarization
[Witten][Maulik, Nekrasov, Okounkov, Pandharipande][Denef, Moore][Schwarz, Tang]

Actually, a more accurate statement is:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right) \sim \Psi_{\mathbb{R}}^{\mathrm{top}}(\xi)
$$

The twistor space fivebrane partition function in type IIB is a non-Gaussian theta series built from the A-model top. string amplitude

$$
H_{\mathrm{NS} 5}^{(1)}(\xi, \tilde{\xi}, \alpha)=e^{-i \pi \alpha} \sum_{n \in \Gamma_{m}} \Psi_{\mathbb{R}}^{\mathrm{top}}\left(\xi^{\Lambda}-n^{\Lambda}\right) \mathbf{E}\left[n^{\Lambda} \tilde{\xi}_{\Lambda}-\frac{1}{2} \xi^{\Lambda} \tilde{\xi}_{\Lambda}\right]
$$

Fits nicely with earlier speculations: [Dijkgraaf,Verlinde,Vonk][Nekrasov, Ooguri,Vafa][Kapustin]

Actually, a more accurate statement is:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right) \sim \Psi_{\mathbb{R}}^{\mathrm{top}}(\xi)
$$

The twistor space fivebrane partition function in type IIB is a non-Gaussian theta series built from the A-model top. string amplitude

$$
H_{\mathrm{NS} 5}^{(1)}(\xi, \tilde{\xi}, \alpha) \equiv e^{-i \pi \alpha} \mathcal{Z}^{(1)}(\xi, \tilde{\xi})
$$

- Now reexamine the NS5-coupling:
$\longrightarrow \mathcal{Z}^{(1)}$ and $e^{i \pi \alpha}$ transform as a sections of $\mathcal{L}_{\Theta}^{\mathbb{C}} \longrightarrow \mathcal{T}^{\mathbb{C}} \quad$ Ok!
\longrightarrow Both factors are separately trivial under $\mathcal{L} \longrightarrow \mathcal{M}_{c}$
Ok!
Follows from: $\quad \alpha=\sigma+\frac{\tau_{2}}{2}\left(t^{-1} W(z)-t \bar{W}(\bar{z})\right)+\frac{i \chi(\mathcal{X})}{24 \pi} \log t$

Actually, a more accurate statement is:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right) \sim \Psi_{\mathbb{R}}^{\mathrm{top}}(\xi)
$$

The twistor space fivebrane partition function in type IIB is a non-Gaussian theta series built from the A-model top. string amplitude

$$
H_{\mathrm{NS} 5}^{(1)}(\xi, \tilde{\xi}, \alpha) \equiv e^{-i \pi \alpha} \mathcal{Z}^{(1)}(\xi, \tilde{\xi})
$$

Coupling is well-defined!

Actually, a more accurate statement is:

$$
H_{\mathrm{NS} 5}^{(1,0)}\left(\xi^{\Lambda}\right) \sim \Psi_{\mathbb{R}}^{\mathrm{top}}(\xi)
$$

The twistor space fivebrane partition function in type IIB is a non-Gaussian theta series built from the A-model top. string amplitude

$$
H_{\mathrm{NS} 5}^{(1)}(\xi, \tilde{\xi}, \alpha) \equiv e^{-i \pi \alpha} \mathcal{Z}^{(1)}(\xi, \tilde{\xi})
$$

\longrightarrow The contribution from $k>1$ NS5-branes should be given by the generating function of rank $r=\operatorname{gcd}(k, p) \quad \mathrm{DT}$-invariants

But what about the Gaussian type IIA partition function?
\longrightarrow By mirror symmetry this is given by a theta series based on the B-model topological string amplitude

But what about the Gaussian type IIA partition function?

- Consistency check: project onto the base \mathcal{M} via the Penrose transform

$$
\begin{aligned}
& e^{-i \pi \sigma} \mathcal{Z}^{(1)}\left(\mathcal{N}, \zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right) "=" \sum_{n \in \Gamma_{m}} \oint_{\mathcal{C}} \frac{d t}{2 \pi i t} e^{-i \pi \alpha} \mathcal{Z}^{(1)}(\xi, \tilde{\xi}) \\
& \quad \sim e^{-i \pi \sigma} e^{f_{1}(z)} \sum_{n \in \Gamma_{m}}\left[\left(\zeta^{\Lambda}-n^{\Lambda}\right)\left(\Im \mathcal{N}_{\Lambda \Sigma}\right) z^{\Sigma}\right]^{\frac{\chi}{24}-1} e^{-S_{\text {Gauss }}^{\text {IIA }}(\mathcal{N}, \zeta, \tilde{\zeta})}
\end{aligned}
$$

\rightarrow Saddle point approx. reproduces Gaussian partition function with insertion
\longrightarrow Phase of the normalization factor determined:

$$
\mathcal{F} \sim e^{f_{1}(z)}
$$

$e^{f_{1}}$: holomorphic part of the B-model one-loop amplitude $F_{1}=\log \left[e^{f_{1}(z)+\bar{f}_{1}(\bar{z})} / \sqrt{M(z, \bar{z})}\right]$

Summary and Discussion

- Initial steps towards understanding NS5-brane instantons in type II/CY3
\rightarrow Proposal for the normalization factor of (non-)chiral partition function
\rightarrow Non-linear partition function in twistor space
\rightarrow Proposal for contact transformation encoding NS5-deformations
\rightarrow Explicit relation with topological string wave functions and DT-invariants

Summary and Discussion

- Crucial open problem: understand wall crossing
\longrightarrow KS-GMN symplectomorphisms should be upgraded to contact transformations
What about the motivic KSWCF?

Here is a suggestive hint: consider the Heisenberg group elements

$$
\begin{array}{ll}
& \xi^{\Lambda} \longrightarrow \xi^{\Lambda}+n^{\Lambda} \\
\gamma=\left(n^{\Lambda}, m_{\Lambda}\right) \quad T_{\gamma}: \quad \tilde{\xi}_{\Lambda} \longrightarrow \tilde{\xi}_{\Lambda}+m_{\Lambda} \\
& \alpha \longrightarrow \alpha-m_{\Lambda} \xi^{\Lambda}+n^{\Lambda} \tilde{\xi}_{\Lambda}
\end{array}
$$

Summary and Discussion

- Crucial open problem: understand wall crossing
\longrightarrow KS-GMN symplectomorphisms should be upgraded to contact transformations
What about the motivic KSWCF?

Here is a suggestive hint: consider the Heisenberg group elements

When acting on sections of the form $F_{k}\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha\right) \equiv F_{k}\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right) e^{-i \pi k \alpha}$

$$
T_{\gamma} T_{\gamma^{\prime}}=q^{\frac{1}{2}\left\langle\gamma, \gamma^{\prime}\right\rangle} T_{\gamma+\gamma^{\prime}}
$$

\longrightarrow quantum torus with deformation parameter: $q^{1 / 2}=-e^{i \pi k}$
Quantum deformation \longleftrightarrow NS5-brane charge

Summary and Discussion

- Crucial open problem: understand wall crossing
\longrightarrow KS-GMN symplectomorphisms should be upgraded to contact transformations
What about the motivic KSWCF?

Here is a suggestive hint: consider the Heisenberg group elements

When acting on sections of the form $F_{k}\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha\right) \equiv F_{k}\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right) e^{-i \pi k \alpha}$

Is there a "generalized" classical limit $q^{1 / 2} \rightarrow-e^{i \pi k}$ where the quantum dilogarithm reduces to a contact transformation?

