D-instantons, Quantum mirror symmetry and Integrability

Sergei Alexandrov

Laboratoire de Physique Théorique et Astroparticules Montpellier

Plan of the talk

- 1. Compactified string theories and their symmetries
- 2. Twistor description of non-perturbative moduli

spaces S.A., B.Pioline, F.Saueressig,

S.Vandoren arXiv:0812.4219 S.A. arXiv:0902.2761

3. Non-perturbative mirror map and $SL(2,\mathbb{Z})$ symmetry in the twistor space

S.A., F.Saueressig arXiv:0906.3743

4. Integrability of instanton corrections and Thermodynamic Bethe Ansatz

S.A., Ph. Roche arXiv:1003.3964

5. Conclusions

Compactifications of string theory

Type II superstring theory compactified on a Calabi-Yau

effective theory in M_4 : $\mathcal{N}=2$ supergravity in 4d coupled to matter

Compactifications of string theory

Type II superstring theory compactified on a Calabi-Yau

effective theory in M_4 :

 $\mathcal{N}=2$ supergravity in 4d coupled to matter

The low-energy action is determined by the geometry of the *moduli space* parameterized by scalars of *vector* and *hypermultiplets:*

$$\mathcal{M}_{VM}$$
 $z^a,\ a{=}1,...,n_V$

X

$$\mathcal{M}_{HM}$$
 $q^{\alpha}, \ \alpha=1,...,4n_{H}$

- \mathcal{M}_{VM} special Kähler
- determined by *holomorphic* prepotential F(z)
- no corrections in string coupling g_s

- \mathcal{M}_{HM} quaternion-Kähler
- can be constructed via its
 twistor space
- receives all types of g_s -corrections

Compactifications of string theory

Type II superstring theory compactified on a Calabi-Yau

effective theory in M_4 :

 $\mathcal{N}=2$ supergravity in 4d coupled to matter

The low-energy action is determined by the geometry of the *moduli space* parameterized by scalars of *vector* and *hypermultiplets*:

$$\mathcal{M}_{VM}$$
 $z^a,\ a{=}1,...,n_V$

X

$$\mathcal{M}_{HM}$$
 $q^{\alpha}, \ \alpha = 1,...,4n_{H}$

- \mathcal{M}_{VM} special Kähler
- determined by *holomorphic* prepotential F(z)
- no corrections in string coupling g_s

- \mathcal{M}_{HM} quaternion-Kähler
- can be constructed via its
 twistor space
- receives all types of g_s -corrections

The goal: to find the non-perturbative geometry of \mathcal{M}_{HM}

Type IIA/X

Type IIB/Y

$$\mathcal{M}_{VM} = \mathcal{K}_K(X)$$

$$\mathcal{M}_{VM} = \mathcal{K}_C(Y)$$

$$\mathcal{M}_{HM} = \mathcal{M}_C(X)$$

$$\mathcal{M}_{HM} = \mathcal{M}_K(Y)$$

Type IIA/X

Type IIB/Y

Type IIA/X

Type IIB/Y

Symplectic invariance

SL(2, ℤ)

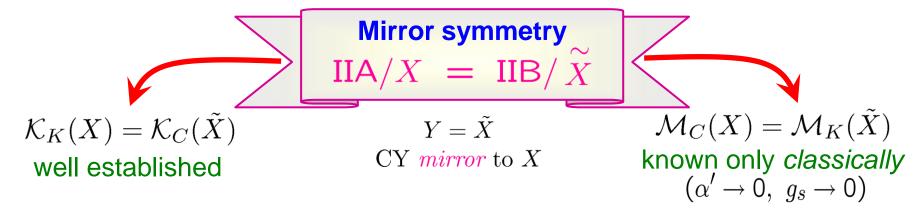


Type
$$IIA/X$$

Type IIB/Y

Symplectic invariance

SL(2, ℤ)

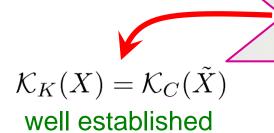


Type IIA/X

Type IIB/Y

Symplectic invariance

SL(2, ℤ)



Mirror symmetry

$$IIA/X = IIB/X$$

$$Y = \tilde{X}$$
CY *mirror* to X

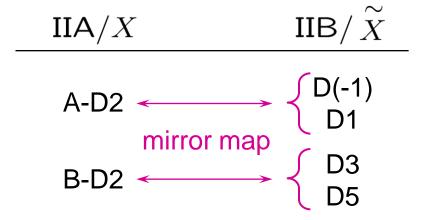
$$\mathcal{M}_C(X) = \mathcal{M}_K(ilde{X})$$
 known only classically $(lpha' o 0, \ g_s o 0)$

VM moduli
$$z^a = b^a + \mathrm{i} t^a$$
 Classical mirror map $\zeta^a = \tau_1$ Bohm, Gunther, Hermann, Louis '99 $\tilde{\zeta}^a = c_a + \frac{1}{2} \kappa_{abc} b^b (c^c - \tau_1 b^c)$ $\tilde{\zeta}_0 = c_0 - \frac{1}{6} \kappa_{abc} b^a b^b (c^c - \tau_1 b^c)$ NS axion $\sigma = -2(\psi + \frac{1}{2} \tau_1 c_0) + c_a (c^a - \tau_1 b^a) - \frac{1}{6} \kappa_{abc} b^a c^b (c^c - \tau_1 b^c)$

Quantum corrections

Corrections to the classical HM moduli space:

- worldsheet instantons
- one loop g_s -corrections
- D-brane instantons



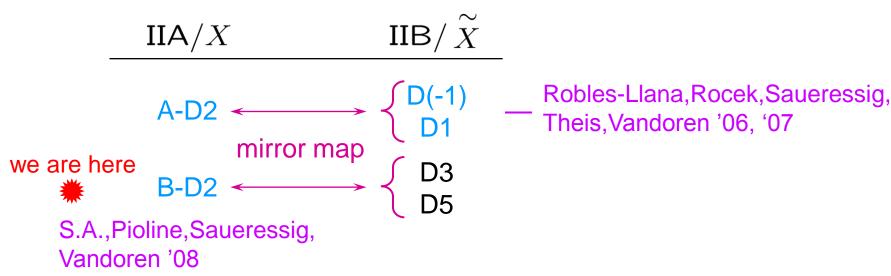
NS5-brane instantons

Quantum corrections

Corrections to the classical HM moduli space:

- worldsheet instantons
- one loop g_s -corrections
- D-brane instantons

- well known from mirror symmetry
- Robles-Llana, Saueressig, Vandoren '06 S.A. '07



NS5-brane instantons

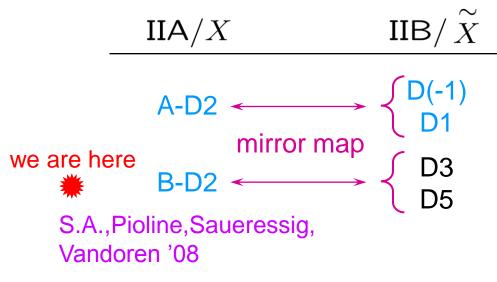
partial results with D.Persson, B.Pioline see Pioline's talk

Quantum corrections

Corrections to the classical HM moduli space:

- worldsheet instantons
- one loop g_s -corrections
- D-brane instantons

- well known from mirror symmetry
- Robles-Llana, Saueressig, Vandoren '06 S.A. '07



NS5-brane instantons

partial results with D.Persson, B.Pioline see Pioline's talk

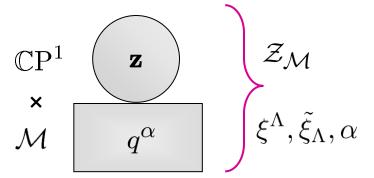
Robles-Llana, Rocek, Saueressig,Theis, Vandoren '06, '07

To go further we need an *instanton* corrected mirror map

I'll present corrections due to worldsheet, D(-1) and D1 instantons

How to conveniently describe (parametrize) a quaternion-Kähler manifold?

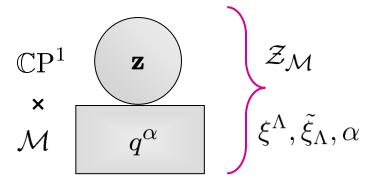
Twistor space



• symmetries of \mathcal{M} can be lifted to $\mathcal{Z}_{\mathcal{M}}$!!!

How to conveniently describe (parametrize) a quaternion-Kähler manifold?

Twistor space



Properties:

- Einstein-Kähler
- has odd complex dimension
- carries contact structure

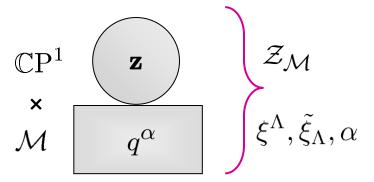
$$\mathcal{X}^{[i]} \equiv \mathrm{d} \alpha^{[i]} + \xi^{\Lambda}_{[i]} \, \mathrm{d} \tilde{\xi}^{[i]}_{\Lambda}$$
 complex Darboux coordinates

• symmetries of \mathcal{M} can be lifted to $\mathcal{Z}_{\mathcal{M}}$!!!

such that
$$\mathcal{X}^{[i]} \wedge (\mathrm{d}\mathcal{X}^{[i]})^d \neq 0$$

How to conveniently describe (parametrize) a quaternion-Kähler manifold?

Twistor space



Properties:

- Einstein-Kähler
- has odd complex dimension
- carries contact structure

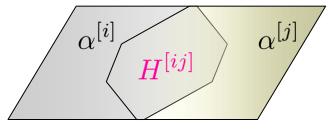
$$\mathcal{X}^{[i]} \equiv \mathrm{d} lpha^{[i]} + \xi^{\Lambda}_{[i]} \, \mathrm{d} \tilde{\xi}^{[i]}_{\Lambda}$$
 complex Darboux coordinates

such that $\mathcal{X}^{[i]} \wedge (d\mathcal{X}^{[i]})^d \neq 0$

• symmetries of \mathcal{M} can be lifted to $\mathcal{Z}_{\mathcal{M}}$!!!

The main ingredient:

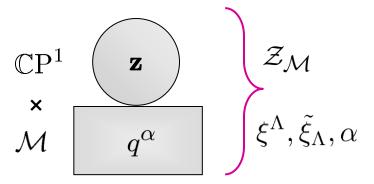
transition functions between different patches $H^{[ij]}(\xi, \tilde{\xi}, \alpha)$



$$\begin{split} \xi^{\Lambda}_{[i]} &= \xi^{\Lambda}_{[j]} + \partial_{\tilde{\xi}^{[j]}_{\Lambda}} H^{[ij]} - \xi^{\Lambda}_{[j]} \partial_{\alpha^{[j]}} H^{[ij]} \\ \tilde{\xi}^{[i]}_{\Lambda} &= \tilde{\xi}^{[j]}_{\Lambda} - \partial_{\xi^{\Lambda}_{[i]}} H^{[ij]} \\ \alpha^{[i]} &= \alpha^{[j]} - H^{[ij]} + \xi^{\Lambda}_{[i]} \partial_{\xi^{\Lambda}_{[i]}} H^{[ij]} \end{split}$$

How to conveniently describe (parametrize) a quaternion-Kähler manifold?

Twistor space



Properties:

- Einstein-Kähler
- has odd complex dimension
- carries contact structure

$$\mathcal{X}^{[i]} \equiv \mathrm{d} lpha^{[i]} + \xi^{\Lambda}_{[i]} \, \mathrm{d} \tilde{\xi}^{[i]}_{\Lambda}$$
 complex Darboux coordinates

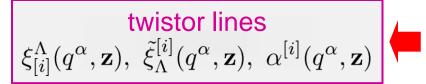
such that $\mathcal{X}^{[i]} \wedge (d\mathcal{X}^{[i]})^d \neq 0$

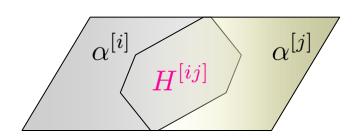
• symmetries of \mathcal{M} can be lifted to $\mathcal{Z}_{\mathcal{M}}$!!!

The main ingredient:

transition functions between different patches

$$H^{[ij]}(\xi,\tilde{\xi},\alpha)$$

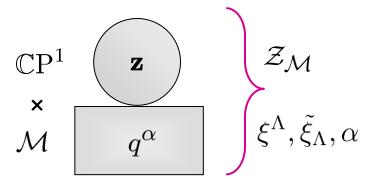




$$\begin{split} \xi^{\Lambda}_{[i]} &= \xi^{\Lambda}_{[j]} + \partial_{\tilde{\xi}^{[j]}_{\Lambda}} H^{[ij]} - \xi^{\Lambda}_{[j]} \partial_{\alpha^{[j]}} H^{[ij]} \\ \tilde{\xi}^{[i]}_{\Lambda} &= \tilde{\xi}^{[j]}_{\Lambda} - \partial_{\xi^{\Lambda}_{[i]}} H^{[ij]} \\ \alpha^{[i]} &= \alpha^{[j]} - H^{[ij]} + \xi^{\Lambda}_{[i]} \partial_{\xi^{\Lambda}_{[i]}} H^{[ij]} \end{split}$$

How to conveniently describe (parametrize) a quaternion-Kähler manifold?

Twistor space



Properties:

- Einstein-Kähler
- has odd complex dimension
- carries contact structure

$$\mathcal{X}^{[i]} \equiv \mathrm{d} lpha^{[i]} + \xi^{\Lambda}_{[i]} \, \mathrm{d} \tilde{\xi}^{[i]}_{\Lambda}$$
 complex Darboux coordinates

such that $\mathcal{X}^{[i]} \wedge (d\mathcal{X}^{[i]})^d \neq 0$

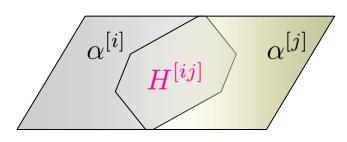
• symmetries of \mathcal{M} can be lifted to $\mathcal{Z}_{\mathcal{M}}$!!!

The main ingredient:

transition functions between different patches

$$H^{[ij]}(\xi,\tilde{\xi},\alpha)$$

 $\xi^{\Lambda}_{[i]}(q^{\alpha},\mathbf{z}),\ \tilde{\xi}^{[i]}_{\Lambda}(q^{\alpha},\mathbf{z}),\ \alpha^{[i]}(q^{\alpha},\mathbf{z})$



$$\begin{split} \xi^{\Lambda}_{[i]} &= \xi^{\Lambda}_{[j]} + \partial_{\tilde{\xi}^{[j]}_{\Lambda}} H^{[ij]} - \xi^{\Lambda}_{[j]} \partial_{\alpha^{[j]}} H^{[ij]} \\ \tilde{\xi}^{[i]}_{\Lambda} &= \tilde{\xi}^{[j]}_{\Lambda} - \partial_{\xi^{\Lambda}_{[i]}} H^{[ij]} \\ \alpha^{[i]} &= \alpha^{[j]} - H^{[ij]} + \xi^{\Lambda}_{[i]} \partial_{\xi^{\Lambda}_{[i]}} H^{[ij]} \end{split}$$

Perturbative HM moduli space

HM moduli space at tree level

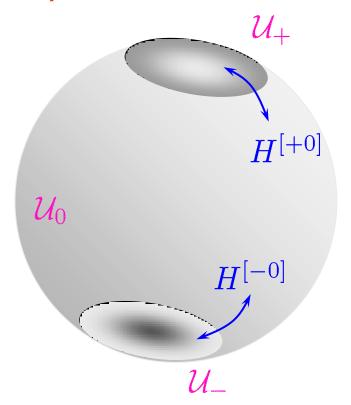
c-map
$$\longrightarrow$$
 $H^{[+0]} = F(\xi)$ $H^{[-0]} = \bar{F}(\xi)$

Twistor lines:

$$\xi_{[0]}^{\Lambda} = \zeta^{\Lambda} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} z^{\Lambda} - \mathbf{z} \, \bar{z}^{\Lambda} \right)
\tilde{\xi}_{\Lambda}^{[0]} = \tilde{\zeta}_{\Lambda} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} F_{\Lambda}(z) - \mathbf{z} \, \bar{F}_{\Lambda}(\bar{z}) \right)
\alpha^{[0]} = \sigma + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} W(z) - \mathbf{z} \, \bar{W}(\bar{z}) \right)$$

where
$$W(z) \equiv F_{\Lambda}(z)\zeta^{\Lambda} - z^{\Lambda}\tilde{\zeta}_{\Lambda}$$

- respect symplectic invariance,
 SL(2,Z)-duality and mirror symmetry
- reproduce the known HM metric



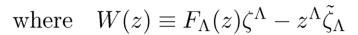
Perturbative HM moduli space

HM moduli space at tree level

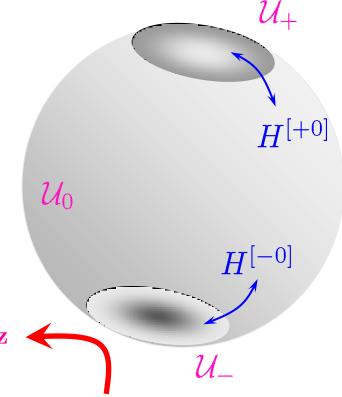
c-map
$$\longrightarrow$$
 $H^{[+0]} = F(\xi)$ $H^{[-0]} = \bar{F}(\xi)$

Twistor lines:

$$\xi_{[0]}^{\Lambda} = \zeta^{\Lambda} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} z^{\Lambda} - \mathbf{z} \, \bar{z}^{\Lambda} \right)
\tilde{\xi}_{\Lambda}^{[0]} = \tilde{\zeta}_{\Lambda} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} F_{\Lambda}(z) - \mathbf{z} \, \bar{F}_{\Lambda}(\bar{z}) \right)
\alpha^{[0]} = \sigma + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} W(z) - \mathbf{z} \, \bar{W}(\bar{z}) \right) + \frac{i \chi_{\text{CY}}}{24\pi} \log \mathbf{z}$$



- respect symplectic invariance,
 SL(2,Z)-duality and mirror symmetry
- reproduce the known HM metric

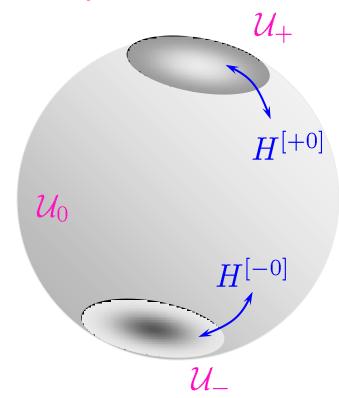


One-loop correction

- appears as a singular boundary condition for twistor lines
- determined by the Euler number

(Type IIA picture)

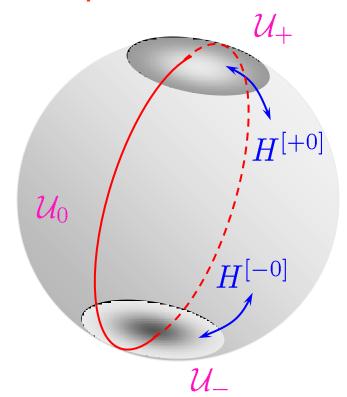
Every D2 brane has the charge $\gamma=(q_\Lambda,p^\Lambda)$ (it wraps the cycle $q_\Lambda\gamma^\Lambda+p^\Lambda\gamma_\Lambda$)



(Type IIA picture)

Every D2 brane has the charge $\ \gamma=(q_\Lambda,p^\Lambda)$ (it wraps the cycle $\ q_\Lambda\gamma^\Lambda+p^\Lambda\gamma_\Lambda$)

It defines a ray on $\mathbb{C}\mathrm{P}^1$: $\theta_{\gamma} = \arg Z_{\gamma}$ $Z_{\gamma}(z) = q_{\Lambda}z^{\Lambda} - p^{\Lambda}F_{\Lambda}(z)$ — central charge

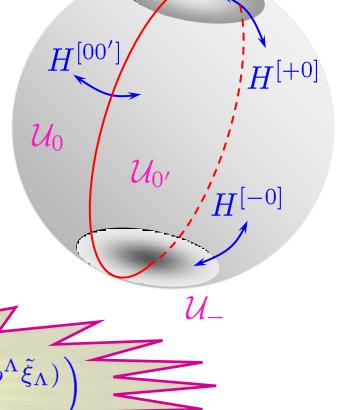


(Type IIA picture)

Every D2 brane has the charge $\ \gamma=(q_\Lambda,p^\Lambda)$ (it wraps the cycle $\ q_\Lambda\gamma^\Lambda+p^\Lambda\gamma_\Lambda$)

It defines a ray on $\mathbb{C}\mathrm{P}^1$: $\theta_{\gamma} = \arg Z_{\gamma}$ $Z_{\gamma}(z) = q_{\Lambda}z^{\Lambda} - p^{\Lambda}F_{\Lambda}(z)$ — central charge

One associates a discontinuity with each ray:



$$H^{[00']} = \frac{n_{\gamma}}{(2\pi)^2} \operatorname{Li}_2\left(e^{2\pi \mathrm{i}(q_{\Lambda}\xi^{\Lambda} - p^{\Lambda}\tilde{\xi}_{\Lambda})}\right)$$

_ generalized Donaldson-Thomas invariants satisfying Kontsevich-Soibelman wall-crossing formula

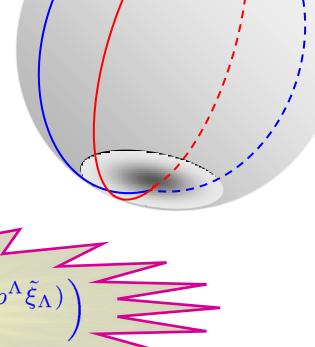
(Type IIA picture)

Every D2 brane has the charge $\ \gamma=(q_\Lambda,p^\Lambda)$ (it wraps the cycle $\ q_\Lambda\gamma^\Lambda+p^\Lambda\gamma_\Lambda$)

It defines a ray on $\mathbb{C}\mathrm{P}^1$: $heta_{\gamma} = \arg Z_{\gamma}$

$$Z_{\gamma}(z) = q_{\Lambda}z^{\Lambda} - p^{\Lambda}F_{\Lambda}(z)$$
 — central charge

One associates a discontinuity with each ray:



$$H^{[00']} = rac{n_{\gamma}}{(2\pi)^2} \operatorname{Li}_2\left(e^{2\pi \mathrm{i}(q_{\Lambda}\xi^{\Lambda} - p^{\Lambda} ilde{\xi}_{\Lambda})}
ight)$$

 n_{γ} generalized Donaldson-Thomas invariants satisfying Kontsevich-Soibelman wall-crossing formula

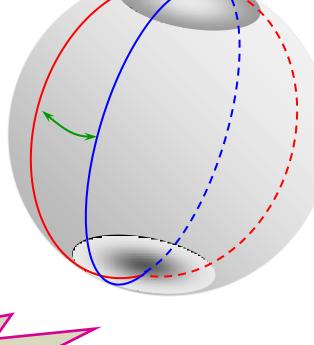
(Type IIA picture)

Every D2 brane has the charge $\ \gamma=(q_\Lambda,p^\Lambda)$ (it wraps the cycle $\ q_\Lambda\gamma^\Lambda+p^\Lambda\gamma_\Lambda$)

It defines a ray on $\mathbb{C}\mathrm{P}^1$: $\theta_{\gamma} = \arg Z_{\gamma}$

$$Z_{\gamma}(z) = q_{\Lambda}z^{\Lambda} - p^{\Lambda}F_{\Lambda}(z)$$
 — central charge

One associates a discontinuity with each ray:



$$H^{[00']} = rac{n_{\gamma}}{(2\pi)^2} \operatorname{Li}_2\left(e^{2\pi \mathrm{i}(q_{\Lambda}\xi^{\Lambda} - p^{\Lambda} ilde{\xi}_{\Lambda})}\right)$$

 n_{γ} ___ generalized Donaldson-Thomas invariants satisfying Kontsevich-Soibelman wall-crossing formula

We *define* the physical fields by the requirement that they transform under duality groups according to the *classical* laws.

The idea: to use a consistency between the mirror and $SL(2, \mathbb{Z})$ symmetries

We *define* the physical fields by the requirement that they transform under duality groups according to the *classical* laws.

The idea: to use a consistency between the mirror and $SL(2, \mathbb{Z})$ symmetries

SL(2,ℤ) duality: (known only at the *classical* level)

$$\xi^{0} \mapsto \frac{a\xi^{0} + b}{c\xi^{0} + d} \quad \xi^{a} \mapsto \frac{\xi^{a}}{c\xi^{0} + d}$$

$$\tilde{\xi}_{a} \mapsto \tilde{\xi}_{a} + \frac{ic}{4(c\xi^{0} + d)} \kappa_{abc} \xi^{b} \xi^{c}$$

$$\begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} \mapsto \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} + \text{non-linear terms}$$

We *define* the physical fields by the requirement that they transform under duality groups according to the *classical* laws.

The idea: to use a consistency between the mirror and $SL(2, \mathbb{Z})$ symmetries

SL(2,ℤ) duality: (known only at the *classical* level)

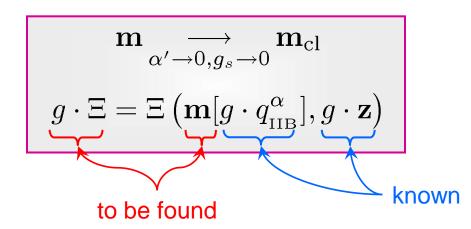
$$\xi^{0} \mapsto \frac{a\xi^{0} + b}{c\xi^{0} + d} \quad \xi^{a} \mapsto \frac{\xi^{a}}{c\xi^{0} + d}$$

$$\tilde{\xi}_{a} \mapsto \tilde{\xi}_{a} + \frac{\mathrm{i}c}{4(c\xi^{0} + d)} \kappa_{abc} \xi^{b} \xi^{c}$$

$$\begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} \mapsto \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} + \text{non-linear terms}$$

Find a map $q_{\text{IIA}}^{\alpha} = \mathbf{m}[q_{\text{IIB}}^{\alpha}]$ and a *holomorphic* action of $\text{SL}(2,\mathbb{Z})$ on the twistor space such that:

$$(\Xi(q_{IIA}^{\alpha}, \mathbf{z}) = (\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha))$$



We *define* the physical fields by the requirement that they transform under duality groups according to the *classical* laws.

The idea: to use a consistency between the mirror and $SL(2, \mathbb{Z})$ symmetries

 $SL(2,\mathbb{Z})$ duality: (known only at the *classical* level)

$$\xi^{0} \mapsto \frac{a\xi^{0} + b}{c\xi^{0} + d} \quad \xi^{a} \mapsto \frac{\xi^{a}}{c\xi^{0} + d}$$

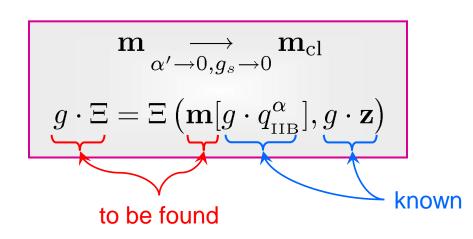
$$\tilde{\xi}_{a} \mapsto \tilde{\xi}_{a} + \frac{\mathrm{i}c}{4(c\xi^{0} + d)} \kappa_{abc} \xi^{b} \xi^{c}$$

$$\begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} \mapsto \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} + \text{non-linear terms}$$

Find a map $\,q^{lpha}_{_{\scriptscriptstyle{\mathrm{II}}\,\mathrm{A}}} = \mathbf{m}[q^{lpha}_{_{\scriptscriptstyle{\mathrm{II}}\,\mathrm{B}}}]\,$ and a *holomorphic* action of $SL(2,\mathbb{Z})$ on the twistor space such that:

$$(\Xi(q_{IIA}^{\alpha}, \mathbf{z}) = (\xi^{\Lambda}, \tilde{\xi}_{\Lambda}, \alpha))$$

One can do this by restricting to α ', D(-1) and D1 corrections



As a result, the consistency condition crucially simplifies

The results

$$\tilde{\zeta}_a^{\text{inst}} = \frac{1}{8\pi^2} \sum_{q_a \geq 0} n_{q_a}^{(0)} q_a \sum_{\substack{n \in \mathbb{Z} \\ m \neq 0}} \frac{m\tau_1 + n}{m|m\tau + n|^2} \, \mathrm{e}^{-S_{m,n,q_a}} \quad \begin{array}{l} \text{Instanton corrections} \\ \text{to the mirror map} \end{array}$$

$$\tilde{\zeta}_0^{\text{inst}} = -\frac{\mathrm{i}}{16\pi^3} \sum_{\substack{q_a \geq 0}} n_{q_a}^{(0)} \sum_{\substack{n \in \mathbb{Z} \\ m \neq 0}} \left[\frac{(m\tau_1 + n)^2}{|m\tau + n|^3} + 2\pi q_a \left(t^a - \mathrm{i} b^a \frac{m\tau_1 + n}{|m\tau + n|} \right) \right] \frac{\mathrm{e}^{-S_{m,n,q_a}}}{m|m\tau + n|}$$

$$\tilde{\zeta}_0^{\text{inst}} = -\frac{\mathrm{i}}{16\pi^3} \sum_{q_a \ge 0} n_{q_a}^{(0)} \sum_{n \in \mathbb{Z}} \left[\frac{(m\tau_1 + n)^2}{|m\tau + n|^3} + 2\pi q_a \left(t^a - \mathrm{i} b^a \frac{m\tau_1 + n}{|m\tau + n|} \right) \right] \frac{\mathrm{e}^{-S_{m,n,q_a}}}{m|m\tau + n|}$$

$$\sigma^{\text{inst}} = \tau_1 \tilde{\zeta}_0^{\text{inst}} - (c^a - \tau_1 b^a) \tilde{\zeta}_a^{\text{inst}} + \frac{i\tau_2^2}{8\pi^2} \sum_{q_a \ge 0} n_{q_a}^{(0)} q_a t^a \sum_{n \ne 0} \frac{e^{-S_{0,n,q_a}}}{n|n|}$$

$$-\frac{\mathrm{i}}{8\pi^3} \sum_{q_a > 0} n_{q_a}^{(0)} \sum_{n \in \mathbb{Z}} \left(2 - \frac{(m\tau_1 + n)^2}{|m\tau + n|^2} \right) \frac{(m\tau_1 + n)\mathrm{e}^{-S_{m,n,q_a}}}{m^2|m\tau + n|^2}$$

$$S_{m,n,q_a} = 2\pi q_a(|m\tau + n|t^a - imc^a - inb^a)$$

The results

$$\tilde{\zeta}_a^{\mathrm{inst}} = rac{1}{8\pi^2} \sum_{q_a \geq 0} n_{q_a}^{(0)} q_a \sum_{\substack{n \in \mathbb{Z} \\ m \neq 0}} rac{m au_1 + n}{m|m au + n|^2} \, \mathrm{e}^{-S_{m,n,q_a}} \quad \begin{array}{l} \mathrm{Instanton\ corrections} \\ \mathrm{to\ the\ mirror\ map} \end{array}$$

$$\tilde{\zeta}_{0}^{\text{inst}} = -\frac{\mathrm{i}}{16\pi^{3}} \sum_{q_{a} \geq 0} n_{q_{a}}^{(0)} \sum_{\substack{n \in \mathbb{Z} \\ m \neq 0}} \left[\frac{(m\tau_{1} + n)^{2}}{|m\tau + n|^{3}} + 2\pi q_{a} \left(t^{a} - \mathrm{i}b^{a} \frac{m\tau_{1} + n}{|m\tau + n|} \right) \right] \frac{\mathrm{e}^{-S_{m,n,q_{a}}}}{m|m\tau + n|}$$

$$\sigma^{\text{inst}} = \tau_1 \tilde{\zeta}_0^{\text{inst}} - (c^a - \tau_1 b^a) \,\tilde{\zeta}_a^{\text{inst}} + \frac{i\tau_2^2}{8\pi^2} \sum_{q_a \ge 0} n_{q_a}^{(0)} q_a t^a \sum_{n \ne 0} \frac{e^{-S_{0,n,q_a}}}{n|n|}$$

$$-\frac{\mathrm{i}}{8\pi^3} \sum_{q_a > 0} n_{q_a}^{(0)} \sum_{n \in \mathbb{Z}} \left(2 - \frac{(m\tau_1 + n)^2}{|m\tau + n|^2} \right) \frac{(m\tau_1 + n)\mathrm{e}^{-S_{m,n,q_a}}}{m^2|m\tau + n|^2}$$

$$S_{m,n,q_a} = 2\pi q_a(|m\tau + n|t^a - imc^a - inb^a)$$

The holomorphic action of SL(2,ℤ) on the twistor space does not receive any corrections!

Equation for the twistor lines:

$$\Xi_{\gamma} = q_{\Lambda} \xi_{[\gamma]}^{\Lambda} - p^{\Lambda} \tilde{\xi}_{\Lambda}^{[\gamma]}$$
 $\Theta_{\gamma} = q_{\Lambda} \zeta^{\Lambda} - p^{\Lambda} \tilde{\zeta}_{\Lambda}$

$$\Xi_{\gamma_a}(\mathbf{z}) = \Theta_{\gamma_a} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} Z_{\gamma_a} - \mathbf{z} \bar{Z}_{\gamma_a} \right) + \frac{1}{8\pi^2} \sum_{b \neq a} n_{\gamma_b} \left\langle \gamma_a, \gamma_b \right\rangle \int_{\ell_{\gamma_b}} \frac{d\mathbf{z}'}{\mathbf{z}'} \, \frac{\mathbf{z} + \mathbf{z}'}{\mathbf{z} - \mathbf{z}'} \, \log \left(1 - e^{-2\pi i \Xi_{\gamma_b}(\mathbf{z}')} \right)$$

Equation for the twistor lines:

$$\Xi_{\gamma} = q_{\Lambda} \xi_{[\gamma]}^{\Lambda} - p^{\Lambda} \tilde{\xi}_{\Lambda}^{[\gamma]}$$
$$\Theta_{\gamma} = q_{\Lambda} \zeta^{\Lambda} - p^{\Lambda} \tilde{\zeta}_{\Lambda}$$

$$\Xi_{\gamma_a}(\mathbf{z}) = \Theta_{\gamma_a} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} Z_{\gamma_a} - \mathbf{z} \bar{Z}_{\gamma_a} \right) + \frac{1}{8\pi^2} \sum_{b \neq a} n_{\gamma_b} \left\langle \gamma_a, \gamma_b \right\rangle \int_{\ell_{\gamma_b}} \frac{d\mathbf{z}'}{\mathbf{z}'} \frac{\mathbf{z} + \mathbf{z}'}{\mathbf{z} - \mathbf{z}'} \log \left(1 - e^{-2\pi i \Xi_{\gamma_b}(\mathbf{z}')} \right)$$

spectral density
$$\epsilon_a(\theta) = 2\pi i (\Xi_{\gamma_a}(\mathbf{z}) - \Theta_a)$$
 $\mathbf{z} = i e^{i\theta_a + \theta}$ — rapidity

$$eta m_a = 2\pi au_2 |Z_{\gamma_a}| \qquad eta \mu_a = -2\pi \mathrm{i}\Theta_b + \pi \mathrm{i}$$
mass parameters—chemical potentials

chemical potentials mass parameters

$$\phi_{ab}(\theta) = -\frac{\mathrm{i}}{2} \langle \gamma_a, \gamma_b \rangle \frac{e^{\theta} + e^{\mathrm{i}(\theta_b - \theta_a)}}{e^{\theta} - e^{\mathrm{i}(\theta_b - \theta_a)}}$$

kernel

Equation for the twistor lines:

$$\Xi_{\gamma} = q_{\Lambda} \xi_{[\gamma]}^{\Lambda} - p^{\Lambda} \tilde{\xi}_{\Lambda}^{[\gamma]}$$
$$\Theta_{\gamma} = q_{\Lambda} \zeta^{\Lambda} - p^{\Lambda} \tilde{\zeta}_{\Lambda}$$

$$\Xi_{\gamma_a}(\mathbf{z}) = \Theta_{\gamma_a} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} Z_{\gamma_a} - \mathbf{z} \bar{Z}_{\gamma_a} \right) + \frac{1}{8\pi^2} \sum_{b \neq a} n_{\gamma_b} \left\langle \gamma_a, \gamma_b \right\rangle \int_{\ell_{\gamma_b}} \frac{d\mathbf{z}'}{\mathbf{z}'} \frac{\mathbf{z} + \mathbf{z}'}{\mathbf{z} - \mathbf{z}'} \log \left(1 - e^{-2\pi i \Xi_{\gamma_b}(\mathbf{z}')} \right)$$

spectral density
$$\epsilon_a(\theta) = 2\pi i (\Xi_{\gamma_a}(\mathbf{z}) - \Theta_a)$$
 $\mathbf{z} = i e^{i\theta_a + \theta}$ — rapidity

$$\beta m_a = 2\pi \tau_2 |Z_{\gamma_a}| \qquad \beta \mu_a = -2\pi \mathrm{i}\Theta_b + \pi \mathrm{i} \qquad \phi_{ab}(\theta) = -\frac{\mathrm{i}}{2} \, \left< \gamma_a, \gamma_b \right> \frac{e^\theta + e^{\mathrm{i}(\theta_b - \theta_a)}}{e^\theta - e^{\mathrm{i}(\theta_b - \theta_a)}}$$
 mass parameters chemical potentials kernel

Thermodynamic Bethe Ansatz equations

$$\epsilon_a(\theta) = m_a \beta \cosh \theta - \frac{1}{2\pi} \sum_b n_{\gamma_b} \int_{-\infty}^{\infty} d\theta' \, \phi_{ab}(\theta - \theta') \, \log \left(1 + e^{\beta \mu_b - \epsilon_b(\theta')} \right)$$

Equation for the twistor lines:

$$\Xi_{\gamma} = q_{\Lambda} \xi_{[\gamma]}^{\Lambda} - p^{\Lambda} \tilde{\xi}_{\Lambda}^{[\gamma]}$$
$$\Theta_{\gamma} = q_{\Lambda} \zeta^{\Lambda} - p^{\Lambda} \tilde{\zeta}_{\Lambda}$$

$$\Xi_{\gamma_a}(\mathbf{z}) = \Theta_{\gamma_a} + \frac{\tau_2}{2} \left(\mathbf{z}^{-1} Z_{\gamma_a} - \mathbf{z} \bar{Z}_{\gamma_a} \right) + \frac{1}{8\pi^2} \sum_{b \neq a} n_{\gamma_b} \left\langle \gamma_a, \gamma_b \right\rangle \int_{\ell_{\gamma_b}} \frac{d\mathbf{z}'}{\mathbf{z}'} \frac{\mathbf{z} + \mathbf{z}'}{\mathbf{z} - \mathbf{z}'} \log \left(1 - e^{-2\pi i \Xi_{\gamma_b}(\mathbf{z}')} \right)$$

spectral density
$$\epsilon_a(\theta) = 2\pi i (\Xi_{\gamma_a}(\mathbf{z}) - \Theta_a)$$
 $\mathbf{z} = i e^{i\theta_a + \theta}$ — rapidity

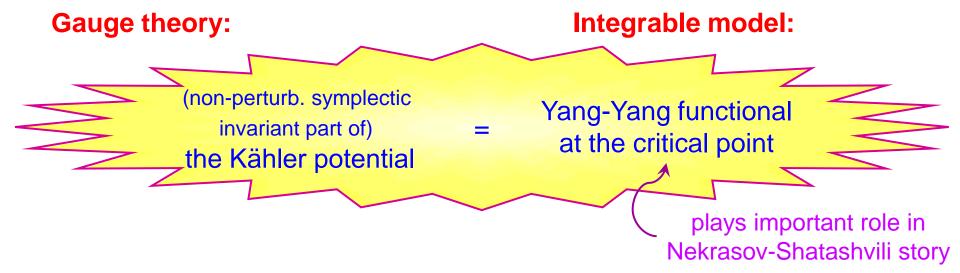
$$\beta m_a = 2\pi \tau_2 |Z_{\gamma_a}| \qquad \beta \mu_a = -2\pi \mathrm{i}\Theta_b + \pi \mathrm{i} \qquad \phi_{ab}(\theta) = -\frac{\mathrm{i}}{2} \left\langle \gamma_a, \gamma_b \right\rangle \frac{e^\theta + e^{\mathrm{i}(\theta_b - \theta_a)}}{e^\theta - e^{\mathrm{i}(\theta_b - \theta_a)}}$$
 mass parameters chemical potentials kernel

Thermodynamic Bethe Ansatz equations

$$\epsilon_a(\theta) = m_a \beta \cosh \theta - \frac{1}{2\pi} \sum_b n_{\gamma_b} \int_{-\infty}^{\infty} d\theta' \, \phi_{ab}(\theta - \theta') \, \log \left(1 + e^{\beta \mu_b - \epsilon_b(\theta')} \right)$$

Is it a formal analogy or something deep?

Potentials, free energy and YY-functional



Potentials, free energy and YY-functional

Gauge theory:

Integrable model:

(non-perturb. symplectic invariant part of) the Kähler potential

Yang-Yang functional at the critical point

plays important role in Nekrasov-Shatashvili story

String theory:

potential for QK spaces — contact potential giving Kähler potential on $\mathcal{Z}_{\mathcal{M}}$

$$\mathcal{X}^{[i]} = \frac{e^{\mathbf{\Phi}^{[i]}(\boldsymbol{q}^{\alpha}, \mathbf{z})}}{\mathrm{i}\mathbf{z}} \left(\mathrm{d}\mathbf{z} + p_{+} - \mathrm{i}p_{3}\,\mathbf{z} + p_{-}\,\mathbf{z}^{2} \right) \quad \Longrightarrow \quad K_{\mathcal{Z}}^{[i]} = \log \frac{1 + \mathbf{z}\bar{\mathbf{z}}}{|\mathbf{z}|} + \operatorname{Re}\,\mathbf{\Phi}^{[i]}$$

Without NS5 contributions it is globally defined and $\Phi^{[i]}(q^{\alpha}, \mathbf{z}) = \phi(q^{\alpha}) \sim \log g_{(4)}^{-2}$

Potentials, free energy and YY-functional

Gauge theory:

Integrable model:

(non-perturb. symplectic invariant part of) the Kähler potential

Yang-Yang functional at the critical point

plays important role in Nekrasov-Shatashvili story

String theory:

potential for QK spaces — contact potential giving Kähler potential on $\mathcal{Z}_{\mathcal{M}}$

$$\mathcal{X}^{[i]} = \frac{e^{\mathbf{\Phi}^{[i]}(\boldsymbol{q}^{\alpha}, \mathbf{z})}}{\mathrm{i}\mathbf{z}} \left(\mathrm{d}\mathbf{z} + p_{+} - \mathrm{i}p_{3}\,\mathbf{z} + p_{-}\,\mathbf{z}^{2} \right) \quad \Longrightarrow \quad K_{\mathcal{Z}}^{[i]} = \log \frac{1 + \mathbf{z}\bar{\mathbf{z}}}{|\mathbf{z}|} + \mathrm{Re}\,\mathbf{\Phi}^{[i]}$$

Without NS5 contributions it is globally defined and $\Phi^{[i]}(q^{\alpha}, \mathbf{z}) = \phi(q^{\alpha}) \sim \log g_{(4)}^{-2}$

(non-perturb. part of)
the contact potential

free energy

$$\phi_{ab}(\theta) = -i \frac{\partial \log S_{ab}}{\partial \theta} \implies$$

$$\phi_{ab}(\theta) = -i \frac{\partial \log S_{ab}}{\partial \theta} \implies S-\text{matrix}$$

$$S_{ab}(\theta) = \left[\sinh \left(\frac{1}{2} \left(\theta + i(\theta_a - \theta_b) \right) \right) \right]^{\langle \gamma_a, \gamma_b \rangle}$$

$$\phi_{ab}(\theta) = -i \frac{\partial \log S_{ab}}{\partial \theta} \implies$$

$$\phi_{ab}(\theta) = -i \frac{\partial \log S_{ab}}{\partial \theta} \implies S_{ab}(\theta) = \left[\sinh \left(\frac{1}{2} \left(\theta + i(\theta_a - \theta_b) \right) \right) \right]^{\langle \gamma_a, \gamma_b \rangle}$$

Conditions on integrable S-matrices:

- Lorentz invariance
- Zamolodchikov algebra
- crossing symmetry
- Yang-Baxter equation
- bootstrap:

$$S_{ab}(\theta)S_{ba}(-\theta) = 1$$

$$S_{b\bar{a}}(\pi i - \theta) = S_{ab}(\theta)$$

trivially satisfied

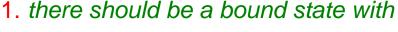
$$\phi_{ab}(\theta) = -i \frac{\partial \log S_{ab}}{\partial \theta} \implies$$

$$S_{ab}(\theta) = \left[\sinh \left(\frac{1}{2} \left(\theta + i(\theta_a - \theta_b) \right) \right) \right]^{\langle \gamma_a, \gamma_b \rangle}$$

Conditions on integrable S-matrices:

- Lorentz invariance
- Zamolodchikov algebra
- crossing symmetry
- Yang-Baxter equation trivially satisfied
- $S_{ab}(\theta)S_{ba}(-\theta)=1$

$$S_{b\bar{a}}(\pi i - \theta) = S_{ab}(\theta)$$



$$m_{\bar{c}}^2 = m_a^2 + m_b^2 + 2m_a m_b \cos u_{ab}^c$$

Fied
$$u^c_{ab}$$
 then $S_{da}(heta-iar{u}^b_{ca})S_{db}(heta+iar{u}^a_{bc})=S_{dar{c}}(heta)$ $ar{u}^c_{ab}=\pi-u^c_{ab}$

We have $u^c_{ab} = \theta_b - \theta_a$ and the bound state carries the charge $\gamma_{\bar{c}} = \gamma_a + \gamma_b$

$$\phi_{ab}(\theta) = -i \frac{\partial \log S_{ab}}{\partial \theta} \implies$$

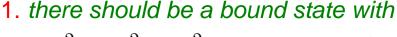
S-matrix

$$S_{ab}(\theta) = \left[\sinh \left(\frac{1}{2} \left(\theta + i(\theta_a - \theta_b) \right) \right) \right]^{\langle \gamma_a, \gamma_b \rangle}$$

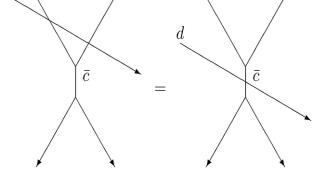
Conditions on integrable S-matrices:

- Lorentz invariance
- Zamolodchikov algebra
- crossing symmetry
- Yang-Baxter equation trivially satisfied
- $S_{ab}(\theta)S_{ba}(-\theta)=1$

$$S_{b\bar{a}}(\pi i - \theta) = S_{ab}(\theta)$$



$$m_{\bar{c}}^2 = m_a^2 + m_b^2 + 2m_a m_b \cos u_{ab}^c$$



2.
$$S_{da}(\theta - i\bar{u}_{ca}^b)S_{db}(\theta + i\bar{u}_{bc}^a) = S_{d\bar{c}}(\theta)$$

$$\bar{u}_{ab}^c = \pi - u_{ab}^c$$

We have $u_{ab}^c = \theta_b - \theta_a$ and the bound state carries the charge $\gamma_{\bar{c}} = \gamma_a + \gamma_b$

All conditions on integrability are satisfied!

Conclusions

Results

- Twistor description of all D-instanton corrections to the HM moduli space
- Generalized mirror map including worldsheet, D(-1)
 D1-instanton corrections.

As a by-product: $SL(2,\mathbb{Z})$ transformations on the twistor space

Relation to integrability

Problems

- To find corrections coming from D3 and D5-insantons
 For this one needs the complete non-perturbative mirror map
- To find NS5-brane instanton corrections
 See Pioline's talk