QUADRUPOLE MOMENT OF SPINNING MICROSTATE GEOMETRIES

Cea

03/06/2025

Angèle Lochet Supervised by losif Bena

FRENCH STRING MEETING 2025 TOURS

[Strominger, Vafa,'96; Bena, Warner, Mathur et al] What is a microstate ? Why studying them ?

No horizon, no singularities

[Hawking,'76] **No information paradox**

MOTIVATION

What is the quadrupole moment and why computing it ?

LISA experiment

Black Hole microstate vs classical object

MOTIVATION

 $M_2 > 0$

4D Kerr-Taub-bolt - fluxes

Leads to discrete sets of allowed (m, α)

Compute the quadrupole moment :

- Method of Asymptotically Cartesian Coord
- Read from the metric M_2 :

 $g_{tt} = -1 +$

METHOD [Bena, Giusto, Ruef, Warner, '09]

Study the regularity conditions : Closed Timelike Curves, positive definite metric

rdinates (AC-N)
[Bena, Mayerson, '20]

$$\frac{2M}{r} + \frac{c_1}{r^2} + \frac{(3\cos^2\theta - 1)M_2 + c_2\cos\theta + c_3}{r^3}O\left(\frac{1}{r^4}\right)$$

RESULTS AND PERSPECTIVES

Do the microstates have same range of charges, mass of real Black Holes ?

THANK YOU!