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o 1. What is it?
background in defect CF'T

e 2. Why is it unusual?
gravitational perspective: rephrasing the BPS equation S Ograv = Ciner

3. Why is it interesting?
CFT perspective: radiation of an accelerating charge

4. How to prove it?
playing with superalgebras and superconformal Ward identities
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Introduction

o Context: (rotation-invariant) conformal defects.
S0O(d,2) — SO(p,2) x SO(d —p) . (1)
o (i) (T*") (energy-momentum stored in the fields)

d—p—1, 6%

afy\ _ [e1
<T >_aT( d |$L‘d ) <T >_05 (2)
i zia? _p+1 59
<T > =ar |z, |42 d |z.]?

(Billd, Gongalves, Lauria, Meineri '16)

o (ii) (D'D7) (resistance to deformation)

Cp &Y

9,7 = 6" (z,)D",  (D(0)D(z))) = Tz e )

o Note that ar is not defined for boundary (p = d — 1), and Cp is not defined for
local operators (p = 0).
o In terms of Cp and ar, our BPS equation reads,

Cp _ 2(d=1)(p+2)T(p+1)

ar — dar-d2T(2 + )I(52)

(4)

(Lewkowycz, Maldacena ’13; Bianchi, Lemos '19)
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Gravitational and Inertial Tension

e In AdS/CFT, a p-dimensional defect is the boundary anchor of a p-brane.

o Local operators (p = 0) are endpoints of particle worldlines. For large operators,
the dual is a black hole, whose mass is not locally defined. The ADM mass
resums the classical GR corrections.

o The dilatation charge A resums both the classical GR corrections (in Gnmo)
and the quantum fluctuations (in 1/mg). For example, in unit-radius AdSy,

A= g +14/mE+ % + GR corrections

3 9 2
= mo{ + T + Sm2 + -4+ Gnmo + (Gnmo)” +

o Can we define a similar invariant tension for p-branes?
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Gravitational and Inertial Tension

@ As an generalization of the dilatation charge, we define the gravitational
tension as the integration of the dilatation current around the dual defect in
CFT,

Tgrav X §l§ ds'a"(Tys) ,  Orav = Ygrav - ar - (6)

o However, there is also another natural measure of tension in terms of its
stiffness, which we call inertial tension,

Oiner = 7iner * Cp . (7)
o The pre-factors are fixed by going to the classical probe brane limit and demand

that both o reduce to the bare Nambu-Goto tension. One finds the following
results by computing the corresponding Witten diagrams,

_2(d—DnldPr2 R ACE))
Vegrav dF(ng) ) “Yiner (p+2)l-,(p+ 1) .

o There is one subtlety in the calculation. There is no global Fefferman—Graham
coordinates for both the bulk and the brane fields. In our case, absolute
normalizations matter.

o To settle this, we calculate the correlator (T‘“’Di) using Witten diagrams.
Schematically, the conformal Ward identities are of the form
(D* [ (8,T"))) ~ (D*D?) and (T*" fH DY) ~ 9'(T*¥). This fixes the ambiguity.

(Bechas, ZC '24)

(8)
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Gravitational and Inertial Tension

e Our BPS equation reduces to
Ograv = Oiner - (9)

Note that both sides receive different non-trivial corrections beyond the
Nambu—Goto limit, however supersymmetry ensures that remain equal.

o For example, the F-string in AdSs xS® is dual to a line defect in A" =4 SYM,

6 1 A/8N 1 A
Cp = —18ar = ﬁ)\éb\ log (Ne LN—1(*E) , o
A 1 A A
Ciner = Ograv = £ {1 +O0(—) + O(i) + O(i)} ,
2 N N Nz
Wlth A = g%MN (Erickson, Semenoff, Zarembo '00; Correa, Henn, Maldacena, Sever ’12)

@ Usually a BPS equation relates mass (or tension) to charge. This unusual one
relates two tensions.
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Radiation of Accelerating Charges

@ The origin of the conjecture: radiation of an accelerating quark in N' =4 SYM.
(Lewkowycz, Maldacena '13)
The authors attempt to reconcile the discrepancy between two calculations of
radiation: (i) from a kink (x Cp); (ii) from a uniformly accelerating quark
(x ar). It originates from the difficulty in separating the radiation from
self-energy.
@ They introduce the modified stress tensor, which is conserved but not traceless,

T =T" + &m0 - 0"9")0 . (11)
ao — v v v gaO
@ Recall that the transverse stress is

il p+1 6%

TY) = - 13
(TV) =ar PR R (13)
It is possible to remove the transverse stress of the static field by choosing
ar .
stress — 577 av T — TZ] =0.
o d(d - 2)ao {r?) (14)

@ This can be done without assuming supersymmetry. We will argue now that
supersymmetry ensures the NEC-violating radiation is also removed.
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Radiation of Accelerating Charges

e Example: Wilson line in 4d A = 2 super-QED (half-BPS iff e = +g),

W = exp (/ds ie Auit + g |y|¢) . (15)
S 1 14 v
T = 0,006 — 006 + 5 (10 — 00)6" |
1 . . , (16)
T4 = Fu"Fop = | FPP . D' =eF* +g0' .
o The scalar operator is O = ¢? and ao = 92/16772,
2 2
+ 3 e==+ 1
£stress = ai = _% = . (17)
8ao 24¢g 6

In the BPS case, this improvement also removes the R¢? contribution which
violates NEC (since k, k., 0"9" $? does not have a definite sign).

(Fiol, Martinez-Montoya '19)
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Radiation of Accelerating Charges

@ More generally, to see the origin of the NEC-violating radiation, let us consider
the energy flux in the background of a moving defect,

<TWmd“”>:amm»+/57wvxTWmD%wwh~. (18)

e The (T'D) term has singularities at both |z, | = 0 and |z — y| = 0. The kinematic
structure is fixed by conformal symmetry and we are left with three constants b;,
(x—y)°

(T (z)D (y)) = [z |9—7|z — y[2p+4 (4b

x|z |2
1
|z —yl?

- b35ij‘mL|2 -+ (b3 - 2b1)£Ei:Cj) .

(19)
o The b;’s are fixed in terms of Cp and ar, since the (T'D) correlator is related to (T')
and (DD) by conformal Ward identities, and we have the traceless constraint for T,

d _ 3
(p+ b2+ b1 = 503 by =27 % (pH)/QF(%)aT ;
(d- p)r(%5) 20
o We can write our BPS equation in the b; parameters,
b p+2
ho_ptz (21)
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Radiation of Accelerating Charges

o The NEC-violating radiation comes from the leading lightcone singularity

32z, PP (L
plp+1)(p+2)

e As an example, let us consider line defects in d = 4. We can replace the
Euclidean propagator by the retarded propagator,

(T (2) D’ (y)) = ) (22)

|z -yl

1 i0(z° — 4°)

T eyl (23)

Upon integration by parts for [dr Yy (T)(T* D7), we get a triple T-derivative
acting on the displacement profile y(7) (c.f. the derivation of the Liénard—Wiechert
potential). The resulting term is proportional to &2y = a. It has no definite sign
(unlike a?), hence violates the NEC. (Fiol, Martinez-Montoya "19)
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Radiation of Accelerating Charges

@ We can choose an appropriate value of £ = Engc to cancel the NEC-violating
term (proportional to b1),
il [P b
—_— é‘NEC = T, a1
(p+1)(p+2)bo (24)
bo = 2pf(¥)ﬂf(”+l)/2(d —2)ao -

@ On the other hand, the value &stress for the removal of the transverse stress is
proportional to bs ~ ar,
ar bs

gstrcss - d(d — 2)(10 = 2d(p+ 1)bO . (25)

o The two values of ¢ are the same iff our BPS equation holds,

b +2
SNEC = €stress <~ i = pTd . (26)

Conclusion: supersymmetry ensures that when the transverse stress is removed,
the NEC-violating radiation is also removed.
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The Proof

o In the BPS case, only the b3d;; term survives after modifying the stress tensor,

o N P
(Toi(z) D (y)) = —bs(1 - E)W(m —y )bij - (27)
The kinematic structure comes from boosting the static field.

o If we choose a complex coordinate z = x! + iz? in the transverse direction, then
the BPS equation is equivalent to the following statement,

(To-(x)D=(y)) =0, (To:(2)D=(y)) x 9d-(O(2) D= (y)) , (28)
or the following (more convenient for the proof),

2 o Zlzo|PH?

(T22(2) D= (y)) < 9:(O(z) D= (y)) ox 0 Te—yrr2 (29)

@ Note that 0, (j.(x)D:(y)) (non-zero in codimension-2) also has this kinematic

structure. We will prove that (T:.D.) is a linear combination of 2 (®D.) and
0:(j-D.), where ® and j are the scalar superprimary (if there is one) and

R-symmetry current in the stress tensor multiplet,
(@ L xa <5 Ju D Jua —5 T (30)

o The strategy is to use superconformal Ward identities to relate (I'D) with (jD)
and (®D). For example, 0 = Q(JD) ~ (I'D) 4+ 9(j D) + 9 (JA).
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The Proof

e For given dimension d and p, it suffices to consider the least N which admits
superconformal p-dimensional (rotation-invariant) defects.

‘ defect | (d, N) ‘ superalgebra p-embedding ‘

(3,2) | osp(2]4:R) su(1,1)1) ® u(1).
line (4,2) su(2,22) osp(4*[2)
(5,1) F(4;2) D(2,1;2;0) @ su(2).
(4.1) su(2,2(1) | su(1,1|1) ®su(l,1). ®u(l).
surface | (5,1) F(4;2) D(2,1;2;0) ®so(2,1)c
(6,1) 0sp(8*|2) | osp(4*|2) D s0(2,1). @ s0(3)c
[p=3[ 061D F&2 | 05p(2]4; R) @ u(1), ]
[p=4 ] (61) [ osp(82) | su(2,2[1) ©u(l). |

As a by-product, we obtain this classification of minimal embeddings. We
examined the possible superalgebra embeddings using the methods of...
(D’Hoker, Estes, Gutperle, Krym, Sorba ’08; Gutperke, Kaldi, Raaj '17; Agmon, Wang ’20)
e For all cases apart from (d, N') = (3,2), (4, 1), there are scalars in the stress
tensor multiplet that can be used in the modification of T#”. However, our proof
is purely algebraic and does not use the existence of such a scalar.

@ The cases for d = 4 and surfaces in d = 6, A" = (2,0) are already discussed in the

literature. (Bianchi, Lemos, Meineri '18; Bianchi, Lemos '19; Drukker, Probst, Trépanier ’'20)
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The Proof

o As a trick to unify the proofs, we make a suitable choice of the y-matrix basis
and of the defect orientation. The transverse complex coordinate is z = z* + iz?.

| d l P l defect directions ‘ preserved supercharges ‘
s |2 34 Q1. Q3 Q1 Q3
4 3456 Q1. Q4. Q3, Qi
1 5 Q1. Q1. QF. @}
5 |2 34 Q1. Q3. Q1. @3
3 34,5 Ql, Q3, Q3, Q)
L Re{O}, O} Q7. O3}
2 34 Q1, Q2
3 [1] 3 | Q1. Q l

R-sym

l
o
I

spinor

@ Our proof only uses the first conserved supercharges in each case.
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The Proof

e As an example, let us consider the case d = 5 for arbitrary p. The
superconformal algebra is F'(4;2). The proof for the other dimensions is the
same up to minor modifications.

o The (32 + 32) stress tensor multiplet contains a scalar ®, a spinor X2, a 2-form
By, the su(2) R-symmetry currents jf“ the supercurrents J;fa and T,

oLy Sl eB,, S Ik ST, . (31)

(Cérdova, Dumitrescu, Intriligator ’16)

o The full transformation law of the stress tensor multiplet is
Q4 (P) = xa

7)as (@)™ + Buw (7 )as e + (0,®) (1")ap e,
)= 275 (0" = 2@xE) ()5 ()a”
= 27 (e’ + 2(0ox8) @ + 64 1)a” (32)
=275 (1)as *” = 5(00d3) (0" = 36,7 Jas(o0)*”
00 Bpo) (1”7 +28,°9"7 = 20" 7," +68,°1" )ap ™

QA (Tuw) = 305 T135) (F0)o” + (5 v) -

The details of the derivation can be found in our paper. (Bachas, Bianchi, ZC ’25)

Zhongwu Chen (LPENS) An Unusual BPS Equation



The Proof

L2 L ileBu LIk ST, . (33)
o The action of Q = Q] on the fields is simple,
1 . 1 1
Q(T..) = 5821,}1 ) Q(]g) = §le1 + 1 BZX% , Q(P) = X} . (34)

o There exists a fermionic defect operator A (a ‘displacino’) such that Q(A) = D,
(without a derivative of the scalar partner, the ‘tilt’).

o We will use the following superconformal Ward identities associated to @ = Q1,

0= Q(T::(2)A(y)) = 30 <J11<x>A<y>> + (T (2)D2(y))
0= Q(2(2)AW)) = S(TL (@A) + 30.04 (@)AW)) + (2 (2)D.(y)) ,  (35)
0=Q(&(2)A(y)) = (xi(2)A(y)) + (& () -(v)) -

()
o As promised, we find that (T..D.) can be expressed as a linear combination of
0.(j.D.) and 92(®D,),
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Conclusion

Supersymmetry leads to a linear relation between the energy stored in the defect
and its stiffness.

Supersymmetry ensures that restoring NEC also removes the transverse stress.

o Graham—-Witten anomalies, e.g. for p = 2 defects,

_ 1 o (2) 7% TFab  4(2)rr ab
T“u’dcfcct - m(a R + dl K‘lei - d2 Wab ) ) (37)
d§2) xCp , dé2) < ar .

(Graham, Reichert '17; Chalabi, Herzog, O’Bannon, Robinson, Sisti '21)

@ Schott term in rediation-reaction force.

Higher order defect Witten diagrams.

Thank you for your attention!
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