
An Unusual BPS Equation

Zhongwu Chen

Tours - June 5, 2025

based on 2404.14998 (Costas Bachas, ZC)
2501.13197 (Costas Bachas, Lorenzo Bianchi, ZC)

Zhongwu Chen (LPENS) An Unusual BPS Equation
based on 2404.14998 (Costas Bachas, ZC) 2501.13197 (Costas Bachas, Lorenzo Bianchi, ZC)

1 / 17



Plan

1. What is it?
background in defect CFT
2. Why is it unusual?
gravitational perspective: rephrasing the BPS equation as σgrav = σiner

3. Why is it interesting?
CFT perspective: radiation of an accelerating charge
4. How to prove it?
playing with superalgebras and superconformal Ward identities
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Introduction

Context: (rotation-invariant) conformal defects.
SO(d, 2) → SO(p, 2) × SO(d − p) . (1)

(i) 〈T µν〉 (energy-momentum stored in the fields)

〈T αβ〉 = aT

(d − p − 1
d

) δαβ

|x⊥|d , 〈T αi〉 = 0 ,

〈T ij〉 = aT

ï
xixj

|x⊥|d+2 − p + 1
d

δij

|x⊥|d

ò
.

(2)

(Billò, Gonçalves, Lauria, Meineri ’16)

(ii) 〈DiDj〉 (resistance to deformation)

∂µT µi = δ(d−p)(x⊥)Di , 〈Di(0)Dj(x‖)〉 = CD δij

|x‖|2p+2 . (3)

Note that aT is not defined for boundary (p = d − 1), and CD is not defined for
local operators (p = 0).
In terms of CD and aT , our BPS equation reads,

CD

aT
= − 2(d − 1)(p + 2)Γ(p + 1)

d πp−d/2Γ( p
2 + 1)Γ( d−p

2 )
. (4)

(Lewkowycz, Maldacena ’13; Bianchi, Lemos ’19)
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Gravitational and Inertial Tension

In AdS/CFT, a p-dimensional defect is the boundary anchor of a p-brane.
Local operators (p = 0) are endpoints of particle worldlines. For large operators,
the dual is a black hole, whose mass is not locally defined. The ADM mass
resums the classical GR corrections.
The dilatation charge ∆ resums both the classical GR corrections (in GNm0)
and the quantum fluctuations (in 1/m0). For example, in unit-radius AdS4,

∆ = 3
2 +
…

m2
0 + 9

4 + GR corrections

= m0

ï
1 + 3

2m0
+ 9

8m2
0

+ · · · + GNm0 + (GNm0)2 + · · ·
ò

.

(5)

Can we define a similar invariant tension for p-branes?
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Gravitational and Inertial Tension

As an generalization of the dilatation charge, we define the gravitational
tension as the integration of the dilatation current around the dual defect in
CFT,

σgrav ∝
˛

dsi xµ〈Tµj〉 , σgrav = γgrav · aT . (6)

However, there is also another natural measure of tension in terms of its
stiffness, which we call inertial tension,

σiner = γiner · CD . (7)
The pre-factors are fixed by going to the classical probe brane limit and demand
that both σ reduce to the bare Nambu–Goto tension. One finds the following
results by computing the corresponding Witten diagrams,

γgrav = −2(d − 1)π(d−p)/2

d Γ( d−p
2 )

, γiner =
πp/2Γ( p

2 + 1)
(p + 2)Γ(p + 1) . (8)

There is one subtlety in the calculation. There is no global Fefferman–Graham
coordinates for both the bulk and the brane fields. In our case, absolute
normalizations matter.
To settle this, we calculate the correlator 〈T µνDi〉 using Witten diagrams.
Schematically, the conformal Ward identities are of the form
〈Di
´

⊥(∂µT µj)〉 ∼ 〈DiDj〉 and 〈T µν
´

‖ Di〉 ∼ ∂i〈T µν〉. This fixes the ambiguity.
(Bachas, ZC ’24)
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Gravitational and Inertial Tension

Our BPS equation reduces to

σgrav = σiner . (9)

Note that both sides receive different non-trivial corrections beyond the
Nambu–Goto limit, however supersymmetry ensures that remain equal.
For example, the F-string in AdS5 ×S5 is dual to a line defect in N = 4 SYM,

CD = −18aT = 6
π2 λ∂λ log

Å
1
N

eλ/8N L1
N−1(− λ

4N
)
ã

,

σiner = σgrav =
√

λ

2π

ï
1 + O( 1√

λ
) + O(

√
λ

N
) + O(

√
λ

N2 )
ò

,

(10)

with λ = g2
YMN . (Erickson, Semenoff, Zarembo ’00; Correa, Henn, Maldacena, Sever ’12)

Usually a BPS equation relates mass (or tension) to charge. This unusual one
relates two tensions.
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Radiation of Accelerating Charges

The origin of the conjecture: radiation of an accelerating quark in N = 4 SYM.
(Lewkowycz, Maldacena ’13)

The authors attempt to reconcile the discrepancy between two calculations of
radiation: (i) from a kink (∝ CD); (ii) from a uniformly accelerating quark
(∝ aT ). It originates from the difficulty in separating the radiation from
self-energy.
They introduce the modified stress tensor, which is conserved but not traceless,

T̃ µν = T µν + ξ(ηµν□ − ∂µ∂ν)O . (11)

〈O(x)〉 = aO

|x⊥|d−2 =⇒ 〈T̃ µν〉 = 〈T µν〉 + (ηµν□ − ∂µ∂ν) ξaO

|x⊥|d−2 . (12)

Recall that the transverse stress is

〈T ij〉 = aT

ï
xixj

|x⊥|d+2 − p + 1
d

δij

|x⊥|d

ò
. (13)

It is possible to remove the transverse stress of the static field by choosing

ξstress = aT

d(d − 2)aO
=⇒ 〈T̃ ij〉 = 0 . (14)

This can be done without assuming supersymmetry. We will argue now that
supersymmetry ensures the NEC-violating radiation is also removed.
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Radiation of Accelerating Charges

Example: Wilson line in 4d N = 2 super-QED (half-BPS iff e = ±g),

W = exp
Å ˆ

ds ie Aµẏµ + g |ẏ|ϕ
ã

. (15)

T (s)
µν = ∂µϕ∂νϕ − 1

2ηµν |∂ϕ|2 + 1
6(ηµν□ − ∂µ∂ν)ϕ2 ,

T (v)
µν = Fµ

ρFνρ − 1
4ηµν |F |2 , Di = eF 0i + g∂iϕ .

(16)

The scalar operator is O = ϕ2 and aO = g2/16π2,

ξstress = aT

8aO
= −g2 + 3e2

24g2
e=±g=== −1

6 . (17)

In the BPS case, this improvement also removes the Rϕ2 contribution which
violates NEC (since kµkν∂µ∂νϕ2 does not have a definite sign).

(Fiol, Martínez-Montoya ’19)
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Radiation of Accelerating Charges

More generally, to see the origin of the NEC-violating radiation, let us consider
the energy flux in the background of a moving defect,

〈T 0i(x)e
´

yj Dj

〉 = 〈T 0i(x)〉 +
ˆ

dτ yj(τ)〈T 0i(x)Dj(y)〉 + · · · . (18)

The 〈T D〉 term has singularities at both |x⊥| = 0 and |x − y| = 0. The kinematic
structure is fixed by conformal symmetry and we are left with three constants bi,

〈T 0i(x)Dj(y)〉 = (x − y)0

|x⊥|d−p|x − y|2p+4

(
4b1

xixj |x⊥|2

|x − y|2 − b3δij |x⊥|2 + (b3 − 2b1)xixj) .

(19)
The bi’s are fixed in terms of CD and aT , since the 〈T D〉 correlator is related to 〈T 〉
and 〈DD〉 by conformal Ward identities, and we have the traceless constraint for T ,

(p + 1)b2 + b1 = d

2 b3 , b3 = 2p+2π−(p+1)/2Γ(p + 3
2 )aT ,

2p b2 − (2d − p − 2)b3 =
(d − p)Γ( d−p

2 )
π(d−p)/2 CD .

(20)

We can write our BPS equation in the bi parameters,

b1

b3
= p + 2

2d
. (21)
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Radiation of Accelerating Charges

The NEC-violating radiation comes from the leading lightcone singularity

〈T 0i(x)Dj(y)〉 = − 32b1|x⊥|p+2−d

p(p + 1)(p + 2)∂0∂i∂j( 1
|x − y|2p

) + · · · . (22)

As an example, let us consider line defects in d = 4. We can replace the
Euclidean propagator by the retarded propagator,

1
4π|x − y|2 7→ iθ(x0 − y0)

2π
δ(|x − y|2) . (23)

Upon integration by parts for
´

dτ yj(τ)〈T 0iDj〉, we get a triple τ -derivative
acting on the displacement profile y(τ) (c.f. the derivation of the Liénard–Wiechert
potential). The resulting term is proportional to ∂3

τ y = ȧ. It has no definite sign
(unlike a2), hence violates the NEC. (Fiol, Martínez-Montoya ’19)

Zhongwu Chen (LPENS) An Unusual BPS Equation
based on 2404.14998 (Costas Bachas, ZC) 2501.13197 (Costas Bachas, Lorenzo Bianchi, ZC)
10 / 17



Radiation of Accelerating Charges

We can choose an appropriate value of ξ = ξNEC to cancel the NEC-violating
term (proportional to b1),

〈O(x)Dj(y)〉 = bO
xj |x⊥|p−d+2

|x − y|2(p+1) =⇒ ξNEC = b1

(p + 1)(p + 2)bO
,

bO = 2pΓ(p + 1
2 )π−(p+1)/2(d − 2)aO .

(24)

On the other hand, the value ξstress for the removal of the transverse stress is
proportional to b3 ∼ aT ,

ξstress = aT

d(d − 2)aO
= b3

2d(p + 1)bO
. (25)

The two values of ξ are the same iff our BPS equation holds,

ξNEC = ξstress ⇐⇒ b1

b3
= p + 2

2d
. (26)

Conclusion: supersymmetry ensures that when the transverse stress is removed,
the NEC-violating radiation is also removed.
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The Proof

In the BPS case, only the b3δij term survives after modifying the stress tensor,

〈T̃0i(x)Dj(y)〉 = −b3(1 − 1
d

) |x⊥|p−d+2

|x − y|2p+4 (x0 − y0)δij . (27)

The kinematic structure comes from boosting the static field.
If we choose a complex coordinate z = x1 + ix2 in the transverse direction, then
the BPS equation is equivalent to the following statement,

〈T̃0z(x)Dz(y)〉 = 0 , 〈T0z(x)Dz(y)〉 ∝ ∂0∂z〈O(x)Dz(y)〉 , (28)
or the following (more convenient for the proof),

〈Tzz(x)Dz(y)〉 ∝ ∂2
z 〈O(x)Dz(y)〉 ∝ ∂2

z

Å
z̄|x⊥|p−d+2

|x − y|2p+2

ã
. (29)

Note that ∂z〈jz(x)Dz(y)〉 (non-zero in codimension-2) also has this kinematic
structure. We will prove that 〈TzzDz〉 is a linear combination of ∂2

z 〈ΦDz〉 and
∂z〈jzDz〉, where Φ and j are the scalar superprimary (if there is one) and
R-symmetry current in the stress tensor multiplet,

(Φ Q−→ χα
Q−→) jµ

Q−→ Jµα
Q−→ Tµν (30)

The strategy is to use superconformal Ward identities to relate 〈T D〉 with 〈jD〉
and 〈ΦD〉. For example, 0 = Q〈JD〉 ∼ 〈T D〉 + ∂〈jD〉 + ∂‖〈JΛ〉.
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The Proof

For given dimension d and p, it suffices to consider the least N which admits
superconformal p-dimensional (rotation-invariant) defects.

As a by-product, we obtain this classification of minimal embeddings. We
examined the possible superalgebra embeddings using the methods of...

(D’Hoker, Estes, Gutperle, Krym, Sorba ’08; Gutperke, Kaldi, Raaj ’17; Agmon, Wang ’20)

For all cases apart from (d, N ) = (3, 2), (4, 1), there are scalars in the stress
tensor multiplet that can be used in the modification of T µν . However, our proof
is purely algebraic and does not use the existence of such a scalar.
The cases for d = 4 and surfaces in d = 6, N = (2, 0) are already discussed in the
literature. (Bianchi, Lemos, Meineri ’18; Bianchi, Lemos ’19; Drukker, Probst, Trépanier ’20)
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The Proof

As a trick to unify the proofs, we make a suitable choice of the γ-matrix basis
and of the defect orientation. The transverse complex coordinate is z = x1 + ix2.

Our proof only uses the first conserved supercharges in each case.
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The Proof

As an example, let us consider the case d = 5 for arbitrary p. The
superconformal algebra is F (4; 2). The proof for the other dimensions is the
same up to minor modifications.
The (32 + 32) stress tensor multiplet contains a scalar Φ, a spinor χA

α , a 2-form
Bµν , the su(2) R-symmetry currents jI

µ, the supercurrents JA
µα and Tµν ,

Φ Q−→ χA
α

Q−→ jI
µ ⊕ Bµν

Q−→ JA
µα

Q−→ Tµν . (31)
(Córdova, Dumitrescu, Intriligator ’16)

The full transformation law of the stress tensor multiplet is
QA

α (Φ) = χA
α ,

QA
α (χB

β ) = jI
µ (γµ)αβ(σI)AB + Bµν (γµν)αβ εAB + (∂µΦ) (γµ)αβ εAB ,

QA
α (jI

µ) = 1
2 JB

µα (σI)B
A − 1

4 (∂νχB
β ) (σI)B

A(γµ
ν)α

β ,

QA
α (Bµν) = − 1

4 JA
ρβ (γµν

ρ)α
β + 1

8 (∂ρχA
β ) (2 γµν

ρ + δ[µ
ργν])α

β ,

QA
α (JB

µβ) = 2 Tµν (γν)αβ εAB − 1
2 (∂νjI

ρ) (γµ
νρ − 3 δµ

ργν)αβ(σI)AB

− 1
2 (∂νBρσ) (γµ

νρσ + 2 δµ
ργνσ − 2 ηνργµ

σ + 6 δµ
ρηνσ)αβ εAB ,

QA
α (Tµν) = 1

4 (∂ρJA
µβ) (γρ

ν)α
β + (µ ↔ ν) .

(32)

The details of the derivation can be found in our paper. (Bachas, Bianchi, ZC ’25)
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The Proof

Φ Q−→ χA
α

Q−→ jI
µ ⊕ Bµν

Q−→ JA
µα

Q−→ Tµν . (33)

The action of Q = Q1
1 on the fields is simple,

Q(Tzz) = 1
2 ∂zJ1

z1 , Q(j3
z ) = 1

2 J1
z1 + 1

4 ∂zχ1
1 , Q(Φ) = χ1

1 . (34)

There exists a fermionic defect operator Λ (a ‘displacino’) such that Q(Λ) = Dz

(without a derivative of the scalar partner, the ‘tilt’).
We will use the following superconformal Ward identities associated to Q = Q1

1,

0 = Q〈Tzz(x)Λ(y)〉 = 1
2 ∂z〈J1

z1(x)Λ(y)〉 + 〈Tzz(x)Dz(y)〉 ,

0 = Q〈j3
z (x)Λ(y)〉 = 1

2 〈J1
z1(x)Λ(y)〉 + 1

4 ∂z〈χ1
1(x)Λ(y)〉 + 〈j3

z (x)Dz(y)〉 ,

0 = Q〈Φ(x)Λ(y)〉 = 〈χ1
1(x)Λ(y)〉 + 〈Φ(x)Dz(y)〉 .

(35)

As promised, we find that 〈TzzDz〉 can be expressed as a linear combination of
∂z〈jzDz〉 and ∂2

z 〈ΦDz〉,

〈Tzz(x)Dz(y)〉 = ∂z〈j3
z (x)Dz(y)〉 − 1

4 ∂2
z 〈Φ(x)Dz(y)〉 ∝ ∂2

z

Å
z̄|x⊥|p−d+2

|x − y|2p+2

ã
. (36)

Q.E.D.
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Conclusion

Supersymmetry leads to a linear relation between the energy stored in the defect
and its stiffness.
Supersymmetry ensures that restoring NEC also removes the transverse stress.
Graham–Witten anomalies, e.g. for p = 2 defects,

Tµ
µ
∣∣
defect = 1

24π
(a(2)R + d

(2)
1
‹Ki

ab
‹Kab

i − d
(2)
2 Wab

ab) ,

d
(2)
1 ∝ CD , d

(2)
2 ∝ aT .

(37)

(Graham, Reichert ’17; Chalabi, Herzog, O’Bannon, Robinson, Sisti ’21)

Schott term in rediation-reaction force.
Higher order defect Witten diagrams.

Thank you for your attention!
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